Properties

Label 192.8.a.s
Level $192$
Weight $8$
Character orbit 192.a
Self dual yes
Analytic conductor $59.978$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,8,Mod(1,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 192.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-54,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.9779248930\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 96)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 48\sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 27 q^{3} + (3 \beta + 14) q^{5} + (7 \beta - 468) q^{7} + 729 q^{9} + ( - 46 \beta - 1692) q^{11} + ( - 42 \beta + 8538) q^{13} + ( - 81 \beta - 378) q^{15} + ( - 102 \beta - 9334) q^{17} + ( - 62 \beta + 22428) q^{19}+ \cdots + ( - 33534 \beta - 1233468) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{3} + 28 q^{5} - 936 q^{7} + 1458 q^{9} - 3384 q^{11} + 17076 q^{13} - 756 q^{15} - 18668 q^{17} + 44856 q^{19} + 25272 q^{21} - 43488 q^{23} + 92974 q^{25} - 39366 q^{27} + 19484 q^{29} - 332856 q^{31}+ \cdots - 2466936 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.44949
2.44949
0 −27.0000 0 −338.727 0 −1291.03 0 729.000 0
1.2 0 −27.0000 0 366.727 0 355.029 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.8.a.s 2
3.b odd 2 1 576.8.a.bg 2
4.b odd 2 1 192.8.a.v 2
8.b even 2 1 96.8.a.f yes 2
8.d odd 2 1 96.8.a.c 2
12.b even 2 1 576.8.a.bh 2
24.f even 2 1 288.8.a.m 2
24.h odd 2 1 288.8.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.8.a.c 2 8.d odd 2 1
96.8.a.f yes 2 8.b even 2 1
192.8.a.s 2 1.a even 1 1 trivial
192.8.a.v 2 4.b odd 2 1
288.8.a.l 2 24.h odd 2 1
288.8.a.m 2 24.f even 2 1
576.8.a.bg 2 3.b odd 2 1
576.8.a.bh 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(192))\):

\( T_{5}^{2} - 28T_{5} - 124220 \) Copy content Toggle raw display
\( T_{7}^{2} + 936T_{7} - 458352 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 28T - 124220 \) Copy content Toggle raw display
$7$ \( T^{2} + 936T - 458352 \) Copy content Toggle raw display
$11$ \( T^{2} + 3384 T - 26388720 \) Copy content Toggle raw display
$13$ \( T^{2} - 17076 T + 48511908 \) Copy content Toggle raw display
$17$ \( T^{2} + 18668 T - 56701340 \) Copy content Toggle raw display
$19$ \( T^{2} - 44856 T + 449875728 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 4944492288 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 33936477500 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 5225639184 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 106202801372 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 52932733444 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 295697508336 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 773128148544 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 332866355812 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 582273824400 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 488646834436 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 13163254274160 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 5687472098304 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 7005028723740 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 9893471218704 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 67745558211984 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 2598748017700 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 126318807666756 \) Copy content Toggle raw display
show more
show less