Properties

Label 192.8.a
Level $192$
Weight $8$
Character orbit 192.a
Rep. character $\chi_{192}(1,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $22$
Sturm bound $256$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 192.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 22 \)
Sturm bound: \(256\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(192))\).

Total New Old
Modular forms 236 28 208
Cusp forms 212 28 184
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim.
\(+\)\(+\)\(+\)\(7\)
\(+\)\(-\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(7\)
\(-\)\(-\)\(+\)\(8\)
Plus space\(+\)\(15\)
Minus space\(-\)\(13\)

Trace form

\( 28 q + 20412 q^{9} + O(q^{10}) \) \( 28 q + 20412 q^{9} + 7064 q^{13} - 5816 q^{17} - 27432 q^{21} + 405252 q^{25} + 103376 q^{29} - 1465176 q^{37} + 882568 q^{41} + 3294172 q^{49} + 1815632 q^{53} + 1972456 q^{61} + 666624 q^{65} - 4790448 q^{69} + 2685304 q^{73} - 3461536 q^{77} + 14880348 q^{81} + 13697888 q^{85} + 4781048 q^{89} + 9661464 q^{93} + 7294552 q^{97} + O(q^{100}) \)

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(192))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
192.8.a.a 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(-27\) \(-390\) \(64\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}-390q^{5}+2^{6}q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.b 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(-27\) \(-270\) \(1112\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}-270q^{5}+1112q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.c 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(-27\) \(-110\) \(504\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}-110q^{5}+504q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.d 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(-27\) \(26\) \(-1056\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+26q^{5}-1056q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.e 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(-27\) \(70\) \(-92\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+70q^{5}-92q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.f 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(-27\) \(114\) \(-1576\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+114q^{5}-1576q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.g 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(-27\) \(378\) \(832\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+378q^{5}+832q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.h 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(-27\) \(530\) \(120\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+530q^{5}+120q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.i 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(27\) \(-390\) \(-64\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}-390q^{5}-2^{6}q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.j 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(27\) \(-270\) \(-1112\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}-270q^{5}-1112q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.k 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(27\) \(-110\) \(-504\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}-110q^{5}-504q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.l 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(27\) \(26\) \(1056\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+26q^{5}+1056q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.m 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(27\) \(70\) \(92\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+70q^{5}+92q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.n 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(27\) \(114\) \(1576\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+114q^{5}+1576q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.o 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(27\) \(378\) \(-832\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+378q^{5}-832q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.p 192.a 1.a $1$ $59.978$ \(\Q\) None \(0\) \(27\) \(530\) \(-120\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+530q^{5}-120q^{7}+3^{6}q^{9}+\cdots\)
192.8.a.q 192.a 1.a $2$ $59.978$ \(\Q(\sqrt{46}) \) None \(0\) \(-54\) \(-196\) \(504\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(-98+\beta )q^{5}+(252-3\beta )q^{7}+\cdots\)
192.8.a.r 192.a 1.a $2$ $59.978$ \(\Q(\sqrt{235}) \) None \(0\) \(-54\) \(-180\) \(1032\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(-90+\beta )q^{5}+(516+5\beta )q^{7}+\cdots\)
192.8.a.s 192.a 1.a $2$ $59.978$ \(\Q(\sqrt{6}) \) None \(0\) \(-54\) \(28\) \(-936\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(14+3\beta )q^{5}+(-468+7\beta )q^{7}+\cdots\)
192.8.a.t 192.a 1.a $2$ $59.978$ \(\Q(\sqrt{46}) \) None \(0\) \(54\) \(-196\) \(-504\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(-98+\beta )q^{5}+(-252+3\beta )q^{7}+\cdots\)
192.8.a.u 192.a 1.a $2$ $59.978$ \(\Q(\sqrt{235}) \) None \(0\) \(54\) \(-180\) \(-1032\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(-90+\beta )q^{5}+(-516-5\beta )q^{7}+\cdots\)
192.8.a.v 192.a 1.a $2$ $59.978$ \(\Q(\sqrt{6}) \) None \(0\) \(54\) \(28\) \(936\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(14+3\beta )q^{5}+(468-7\beta )q^{7}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(192))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(192)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 7}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 2}\)