Properties

Label 192.7.e.c
Level $192$
Weight $7$
Character orbit 192.e
Analytic conductor $44.170$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,7,Mod(65,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.65"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 192.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-42,0,0,0,4,0,306] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.1703840550\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 12\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 21) q^{3} + 10 \beta q^{5} + 2 q^{7} + (42 \beta + 153) q^{9} + 2 \beta q^{11} + 2950 q^{13} + ( - 210 \beta + 2880) q^{15} + 264 \beta q^{17} - 5258 q^{19} + ( - 2 \beta - 42) q^{21} - 604 \beta q^{23} + \cdots + (306 \beta - 24192) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 42 q^{3} + 4 q^{7} + 306 q^{9} + 5900 q^{13} + 5760 q^{15} - 10516 q^{19} - 84 q^{21} - 26350 q^{25} + 17766 q^{27} + 45796 q^{31} + 1152 q^{33} - 68116 q^{37} - 123900 q^{39} + 12812 q^{43} - 241920 q^{45}+ \cdots - 48384 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
1.41421i
1.41421i
0 −21.0000 16.9706i 0 169.706i 0 2.00000 0 153.000 + 712.764i 0
65.2 0 −21.0000 + 16.9706i 0 169.706i 0 2.00000 0 153.000 712.764i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.7.e.c 2
3.b odd 2 1 inner 192.7.e.c 2
4.b odd 2 1 192.7.e.f 2
8.b even 2 1 6.7.b.a 2
8.d odd 2 1 48.7.e.b 2
12.b even 2 1 192.7.e.f 2
24.f even 2 1 48.7.e.b 2
24.h odd 2 1 6.7.b.a 2
40.f even 2 1 150.7.d.a 2
40.i odd 4 2 150.7.b.a 4
56.h odd 2 1 294.7.b.a 2
72.j odd 6 2 162.7.d.b 4
72.n even 6 2 162.7.d.b 4
120.i odd 2 1 150.7.d.a 2
120.w even 4 2 150.7.b.a 4
168.i even 2 1 294.7.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.7.b.a 2 8.b even 2 1
6.7.b.a 2 24.h odd 2 1
48.7.e.b 2 8.d odd 2 1
48.7.e.b 2 24.f even 2 1
150.7.b.a 4 40.i odd 4 2
150.7.b.a 4 120.w even 4 2
150.7.d.a 2 40.f even 2 1
150.7.d.a 2 120.i odd 2 1
162.7.d.b 4 72.j odd 6 2
162.7.d.b 4 72.n even 6 2
192.7.e.c 2 1.a even 1 1 trivial
192.7.e.c 2 3.b odd 2 1 inner
192.7.e.f 2 4.b odd 2 1
192.7.e.f 2 12.b even 2 1
294.7.b.a 2 56.h odd 2 1
294.7.b.a 2 168.i even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{7}^{\mathrm{new}}(192, [\chi])\):

\( T_{5}^{2} + 28800 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 42T + 729 \) Copy content Toggle raw display
$5$ \( T^{2} + 28800 \) Copy content Toggle raw display
$7$ \( (T - 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 1152 \) Copy content Toggle raw display
$13$ \( (T - 2950)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 20072448 \) Copy content Toggle raw display
$19$ \( (T + 5258)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 105067008 \) Copy content Toggle raw display
$29$ \( T^{2} + 4867200 \) Copy content Toggle raw display
$31$ \( (T - 22898)^{2} \) Copy content Toggle raw display
$37$ \( (T + 34058)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 281129472 \) Copy content Toggle raw display
$43$ \( (T - 6406)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 32359680000 \) Copy content Toggle raw display
$53$ \( T^{2} + 37074734208 \) Copy content Toggle raw display
$59$ \( T^{2} + 106810722432 \) Copy content Toggle raw display
$61$ \( (T - 62566)^{2} \) Copy content Toggle raw display
$67$ \( (T + 438698)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 4654195200 \) Copy content Toggle raw display
$73$ \( (T + 730510)^{2} \) Copy content Toggle raw display
$79$ \( (T - 340562)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 246267234432 \) Copy content Toggle raw display
$89$ \( T^{2} + 149556367872 \) Copy content Toggle raw display
$97$ \( (T + 281086)^{2} \) Copy content Toggle raw display
show more
show less