Properties

Label 192.6.c.c.191.2
Level $192$
Weight $6$
Character 192.191
Analytic conductor $30.794$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,6,Mod(191,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.191");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 192.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.7936934041\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.2
Root \(0.500000 - 1.65831i\) of defining polynomial
Character \(\chi\) \(=\) 192.191
Dual form 192.6.c.c.191.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(12.0000 + 9.94987i) q^{3} +79.5990i q^{5} +179.098i q^{7} +(45.0000 + 238.797i) q^{9} +O(q^{10})\) \(q+(12.0000 + 9.94987i) q^{3} +79.5990i q^{5} +179.098i q^{7} +(45.0000 + 238.797i) q^{9} +648.000 q^{11} +242.000 q^{13} +(-792.000 + 955.188i) q^{15} +318.396i q^{17} -1253.68i q^{19} +(-1782.00 + 2149.17i) q^{21} -1296.00 q^{23} -3211.00 q^{25} +(-1836.00 + 3313.31i) q^{27} -1989.97i q^{29} -3402.86i q^{31} +(7776.00 + 6447.52i) q^{33} -14256.0 q^{35} +12058.0 q^{37} +(2904.00 + 2407.87i) q^{39} -14805.4i q^{41} +18088.9i q^{43} +(-19008.0 + 3581.95i) q^{45} -12960.0 q^{47} -15269.0 q^{49} +(-3168.00 + 3820.75i) q^{51} -26984.1i q^{53} +51580.1i q^{55} +(12474.0 - 15044.2i) q^{57} +8424.00 q^{59} +25762.0 q^{61} +(-42768.0 + 8059.40i) q^{63} +19263.0i q^{65} +10208.6i q^{67} +(-15552.0 - 12895.0i) q^{69} -55728.0 q^{71} +26026.0 q^{73} +(-38532.0 - 31949.0i) q^{75} +116055. i q^{77} -19163.5i q^{79} +(-54999.0 + 21491.7i) q^{81} -78408.0 q^{83} -25344.0 q^{85} +(19800.0 - 23879.7i) q^{87} +84215.7i q^{89} +43341.7i q^{91} +(33858.0 - 40834.3i) q^{93} +99792.0 q^{95} +103090. q^{97} +(29160.0 + 154740. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 24 q^{3} + 90 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 24 q^{3} + 90 q^{9} + 1296 q^{11} + 484 q^{13} - 1584 q^{15} - 3564 q^{21} - 2592 q^{23} - 6422 q^{25} - 3672 q^{27} + 15552 q^{33} - 28512 q^{35} + 24116 q^{37} + 5808 q^{39} - 38016 q^{45} - 25920 q^{47} - 30538 q^{49} - 6336 q^{51} + 24948 q^{57} + 16848 q^{59} + 51524 q^{61} - 85536 q^{63} - 31104 q^{69} - 111456 q^{71} + 52052 q^{73} - 77064 q^{75} - 109998 q^{81} - 156816 q^{83} - 50688 q^{85} + 39600 q^{87} + 67716 q^{93} + 199584 q^{95} + 206180 q^{97} + 58320 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 12.0000 + 9.94987i 0.769800 + 0.638285i
\(4\) 0 0
\(5\) 79.5990i 1.42391i 0.702225 + 0.711955i \(0.252190\pi\)
−0.702225 + 0.711955i \(0.747810\pi\)
\(6\) 0 0
\(7\) 179.098i 1.38148i 0.723103 + 0.690741i \(0.242715\pi\)
−0.723103 + 0.690741i \(0.757285\pi\)
\(8\) 0 0
\(9\) 45.0000 + 238.797i 0.185185 + 0.982704i
\(10\) 0 0
\(11\) 648.000 1.61471 0.807353 0.590069i \(-0.200900\pi\)
0.807353 + 0.590069i \(0.200900\pi\)
\(12\) 0 0
\(13\) 242.000 0.397152 0.198576 0.980085i \(-0.436368\pi\)
0.198576 + 0.980085i \(0.436368\pi\)
\(14\) 0 0
\(15\) −792.000 + 955.188i −0.908860 + 1.09613i
\(16\) 0 0
\(17\) 318.396i 0.267205i 0.991035 + 0.133603i \(0.0426546\pi\)
−0.991035 + 0.133603i \(0.957345\pi\)
\(18\) 0 0
\(19\) 1253.68i 0.796717i −0.917230 0.398359i \(-0.869580\pi\)
0.917230 0.398359i \(-0.130420\pi\)
\(20\) 0 0
\(21\) −1782.00 + 2149.17i −0.881778 + 1.06346i
\(22\) 0 0
\(23\) −1296.00 −0.510841 −0.255420 0.966830i \(-0.582214\pi\)
−0.255420 + 0.966830i \(0.582214\pi\)
\(24\) 0 0
\(25\) −3211.00 −1.02752
\(26\) 0 0
\(27\) −1836.00 + 3313.31i −0.484689 + 0.874686i
\(28\) 0 0
\(29\) 1989.97i 0.439392i −0.975568 0.219696i \(-0.929493\pi\)
0.975568 0.219696i \(-0.0705066\pi\)
\(30\) 0 0
\(31\) 3402.86i 0.635974i −0.948095 0.317987i \(-0.896993\pi\)
0.948095 0.317987i \(-0.103007\pi\)
\(32\) 0 0
\(33\) 7776.00 + 6447.52i 1.24300 + 1.03064i
\(34\) 0 0
\(35\) −14256.0 −1.96711
\(36\) 0 0
\(37\) 12058.0 1.44801 0.724004 0.689796i \(-0.242300\pi\)
0.724004 + 0.689796i \(0.242300\pi\)
\(38\) 0 0
\(39\) 2904.00 + 2407.87i 0.305728 + 0.253496i
\(40\) 0 0
\(41\) 14805.4i 1.37550i −0.725947 0.687750i \(-0.758598\pi\)
0.725947 0.687750i \(-0.241402\pi\)
\(42\) 0 0
\(43\) 18088.9i 1.49190i 0.666001 + 0.745951i \(0.268005\pi\)
−0.666001 + 0.745951i \(0.731995\pi\)
\(44\) 0 0
\(45\) −19008.0 + 3581.95i −1.39928 + 0.263687i
\(46\) 0 0
\(47\) −12960.0 −0.855777 −0.427888 0.903832i \(-0.640742\pi\)
−0.427888 + 0.903832i \(0.640742\pi\)
\(48\) 0 0
\(49\) −15269.0 −0.908491
\(50\) 0 0
\(51\) −3168.00 + 3820.75i −0.170553 + 0.205695i
\(52\) 0 0
\(53\) 26984.1i 1.31952i −0.751474 0.659762i \(-0.770657\pi\)
0.751474 0.659762i \(-0.229343\pi\)
\(54\) 0 0
\(55\) 51580.1i 2.29920i
\(56\) 0 0
\(57\) 12474.0 15044.2i 0.508532 0.613313i
\(58\) 0 0
\(59\) 8424.00 0.315056 0.157528 0.987514i \(-0.449647\pi\)
0.157528 + 0.987514i \(0.449647\pi\)
\(60\) 0 0
\(61\) 25762.0 0.886452 0.443226 0.896410i \(-0.353834\pi\)
0.443226 + 0.896410i \(0.353834\pi\)
\(62\) 0 0
\(63\) −42768.0 + 8059.40i −1.35759 + 0.255830i
\(64\) 0 0
\(65\) 19263.0i 0.565509i
\(66\) 0 0
\(67\) 10208.6i 0.277829i 0.990304 + 0.138915i \(0.0443614\pi\)
−0.990304 + 0.138915i \(0.955639\pi\)
\(68\) 0 0
\(69\) −15552.0 12895.0i −0.393245 0.326062i
\(70\) 0 0
\(71\) −55728.0 −1.31198 −0.655991 0.754769i \(-0.727749\pi\)
−0.655991 + 0.754769i \(0.727749\pi\)
\(72\) 0 0
\(73\) 26026.0 0.571611 0.285805 0.958288i \(-0.407739\pi\)
0.285805 + 0.958288i \(0.407739\pi\)
\(74\) 0 0
\(75\) −38532.0 31949.0i −0.790985 0.655850i
\(76\) 0 0
\(77\) 116055.i 2.23069i
\(78\) 0 0
\(79\) 19163.5i 0.345467i −0.984969 0.172733i \(-0.944740\pi\)
0.984969 0.172733i \(-0.0552599\pi\)
\(80\) 0 0
\(81\) −54999.0 + 21491.7i −0.931413 + 0.363964i
\(82\) 0 0
\(83\) −78408.0 −1.24930 −0.624648 0.780907i \(-0.714757\pi\)
−0.624648 + 0.780907i \(0.714757\pi\)
\(84\) 0 0
\(85\) −25344.0 −0.380477
\(86\) 0 0
\(87\) 19800.0 23879.7i 0.280458 0.338244i
\(88\) 0 0
\(89\) 84215.7i 1.12699i 0.826121 + 0.563493i \(0.190543\pi\)
−0.826121 + 0.563493i \(0.809457\pi\)
\(90\) 0 0
\(91\) 43341.7i 0.548658i
\(92\) 0 0
\(93\) 33858.0 40834.3i 0.405933 0.489573i
\(94\) 0 0
\(95\) 99792.0 1.13445
\(96\) 0 0
\(97\) 103090. 1.11247 0.556234 0.831026i \(-0.312246\pi\)
0.556234 + 0.831026i \(0.312246\pi\)
\(98\) 0 0
\(99\) 29160.0 + 154740.i 0.299020 + 1.58678i
\(100\) 0 0
\(101\) 83340.1i 0.812926i −0.913667 0.406463i \(-0.866762\pi\)
0.913667 0.406463i \(-0.133238\pi\)
\(102\) 0 0
\(103\) 45669.9i 0.424167i −0.977252 0.212084i \(-0.931975\pi\)
0.977252 0.212084i \(-0.0680249\pi\)
\(104\) 0 0
\(105\) −171072. 141845.i −1.51428 1.25557i
\(106\) 0 0
\(107\) 21384.0 0.180563 0.0902817 0.995916i \(-0.471223\pi\)
0.0902817 + 0.995916i \(0.471223\pi\)
\(108\) 0 0
\(109\) −58894.0 −0.474794 −0.237397 0.971413i \(-0.576294\pi\)
−0.237397 + 0.971413i \(0.576294\pi\)
\(110\) 0 0
\(111\) 144696. + 119976.i 1.11468 + 0.924241i
\(112\) 0 0
\(113\) 79917.4i 0.588769i −0.955687 0.294385i \(-0.904885\pi\)
0.955687 0.294385i \(-0.0951147\pi\)
\(114\) 0 0
\(115\) 103160.i 0.727391i
\(116\) 0 0
\(117\) 10890.0 + 57788.9i 0.0735467 + 0.390283i
\(118\) 0 0
\(119\) −57024.0 −0.369139
\(120\) 0 0
\(121\) 258853. 1.60727
\(122\) 0 0
\(123\) 147312. 177665.i 0.877961 1.05886i
\(124\) 0 0
\(125\) 6845.51i 0.0391860i
\(126\) 0 0
\(127\) 140950.i 0.775453i −0.921774 0.387727i \(-0.873260\pi\)
0.921774 0.387727i \(-0.126740\pi\)
\(128\) 0 0
\(129\) −179982. + 217066.i −0.952258 + 1.14847i
\(130\) 0 0
\(131\) 292248. 1.48790 0.743949 0.668236i \(-0.232950\pi\)
0.743949 + 0.668236i \(0.232950\pi\)
\(132\) 0 0
\(133\) 224532. 1.10065
\(134\) 0 0
\(135\) −263736. 146144.i −1.24547 0.690154i
\(136\) 0 0
\(137\) 155536.i 0.707996i −0.935246 0.353998i \(-0.884822\pi\)
0.935246 0.353998i \(-0.115178\pi\)
\(138\) 0 0
\(139\) 398851.i 1.75095i −0.483265 0.875474i \(-0.660549\pi\)
0.483265 0.875474i \(-0.339451\pi\)
\(140\) 0 0
\(141\) −155520. 128950.i −0.658777 0.546229i
\(142\) 0 0
\(143\) 156816. 0.641284
\(144\) 0 0
\(145\) 158400. 0.625655
\(146\) 0 0
\(147\) −183228. 151925.i −0.699356 0.579876i
\(148\) 0 0
\(149\) 213564.i 0.788066i −0.919096 0.394033i \(-0.871080\pi\)
0.919096 0.394033i \(-0.128920\pi\)
\(150\) 0 0
\(151\) 199336.i 0.711448i 0.934591 + 0.355724i \(0.115766\pi\)
−0.934591 + 0.355724i \(0.884234\pi\)
\(152\) 0 0
\(153\) −76032.0 + 14327.8i −0.262584 + 0.0494825i
\(154\) 0 0
\(155\) 270864. 0.905570
\(156\) 0 0
\(157\) 195490. 0.632959 0.316479 0.948599i \(-0.397499\pi\)
0.316479 + 0.948599i \(0.397499\pi\)
\(158\) 0 0
\(159\) 268488. 323809.i 0.842233 1.01577i
\(160\) 0 0
\(161\) 232111.i 0.705717i
\(162\) 0 0
\(163\) 450073.i 1.32682i 0.748254 + 0.663412i \(0.230892\pi\)
−0.748254 + 0.663412i \(0.769108\pi\)
\(164\) 0 0
\(165\) −513216. + 618962.i −1.46754 + 1.76992i
\(166\) 0 0
\(167\) 384912. 1.06800 0.533999 0.845485i \(-0.320689\pi\)
0.533999 + 0.845485i \(0.320689\pi\)
\(168\) 0 0
\(169\) −312729. −0.842270
\(170\) 0 0
\(171\) 299376. 56415.8i 0.782937 0.147540i
\(172\) 0 0
\(173\) 48794.2i 0.123952i −0.998078 0.0619759i \(-0.980260\pi\)
0.998078 0.0619759i \(-0.0197402\pi\)
\(174\) 0 0
\(175\) 575083.i 1.41950i
\(176\) 0 0
\(177\) 101088. + 83817.7i 0.242531 + 0.201096i
\(178\) 0 0
\(179\) −607176. −1.41639 −0.708194 0.706018i \(-0.750490\pi\)
−0.708194 + 0.706018i \(0.750490\pi\)
\(180\) 0 0
\(181\) 511850. 1.16130 0.580652 0.814152i \(-0.302798\pi\)
0.580652 + 0.814152i \(0.302798\pi\)
\(182\) 0 0
\(183\) 309144. + 256329.i 0.682391 + 0.565808i
\(184\) 0 0
\(185\) 959805.i 2.06183i
\(186\) 0 0
\(187\) 206321.i 0.431458i
\(188\) 0 0
\(189\) −593406. 328823.i −1.20836 0.669589i
\(190\) 0 0
\(191\) 186624. 0.370155 0.185078 0.982724i \(-0.440746\pi\)
0.185078 + 0.982724i \(0.440746\pi\)
\(192\) 0 0
\(193\) 169730. 0.327994 0.163997 0.986461i \(-0.447561\pi\)
0.163997 + 0.986461i \(0.447561\pi\)
\(194\) 0 0
\(195\) −191664. + 231155.i −0.360956 + 0.435329i
\(196\) 0 0
\(197\) 715834.i 1.31416i 0.753823 + 0.657078i \(0.228208\pi\)
−0.753823 + 0.657078i \(0.771792\pi\)
\(198\) 0 0
\(199\) 596216.i 1.06726i 0.845717 + 0.533631i \(0.179173\pi\)
−0.845717 + 0.533631i \(0.820827\pi\)
\(200\) 0 0
\(201\) −101574. + 122503.i −0.177334 + 0.213873i
\(202\) 0 0
\(203\) 356400. 0.607012
\(204\) 0 0
\(205\) 1.17850e6 1.95859
\(206\) 0 0
\(207\) −58320.0 309481.i −0.0946001 0.502005i
\(208\) 0 0
\(209\) 812387.i 1.28646i
\(210\) 0 0
\(211\) 317898.i 0.491567i −0.969325 0.245783i \(-0.920955\pi\)
0.969325 0.245783i \(-0.0790452\pi\)
\(212\) 0 0
\(213\) −668736. 554487.i −1.00996 0.837418i
\(214\) 0 0
\(215\) −1.43986e6 −2.12433
\(216\) 0 0
\(217\) 609444. 0.878586
\(218\) 0 0
\(219\) 312312. + 258955.i 0.440026 + 0.364850i
\(220\) 0 0
\(221\) 77051.8i 0.106121i
\(222\) 0 0
\(223\) 134144.i 0.180638i 0.995913 + 0.0903191i \(0.0287887\pi\)
−0.995913 + 0.0903191i \(0.971211\pi\)
\(224\) 0 0
\(225\) −144495. 766777.i −0.190281 1.00975i
\(226\) 0 0
\(227\) −734184. −0.945671 −0.472836 0.881151i \(-0.656770\pi\)
−0.472836 + 0.881151i \(0.656770\pi\)
\(228\) 0 0
\(229\) −317062. −0.399536 −0.199768 0.979843i \(-0.564019\pi\)
−0.199768 + 0.979843i \(0.564019\pi\)
\(230\) 0 0
\(231\) −1.15474e6 + 1.39266e6i −1.42381 + 1.71718i
\(232\) 0 0
\(233\) 234180.i 0.282592i 0.989967 + 0.141296i \(0.0451270\pi\)
−0.989967 + 0.141296i \(0.954873\pi\)
\(234\) 0 0
\(235\) 1.03160e6i 1.21855i
\(236\) 0 0
\(237\) 190674. 229961.i 0.220506 0.265940i
\(238\) 0 0
\(239\) −85536.0 −0.0968622 −0.0484311 0.998827i \(-0.515422\pi\)
−0.0484311 + 0.998827i \(0.515422\pi\)
\(240\) 0 0
\(241\) −666446. −0.739133 −0.369566 0.929204i \(-0.620494\pi\)
−0.369566 + 0.929204i \(0.620494\pi\)
\(242\) 0 0
\(243\) −873828. 289332.i −0.949315 0.314327i
\(244\) 0 0
\(245\) 1.21540e6i 1.29361i
\(246\) 0 0
\(247\) 303392.i 0.316418i
\(248\) 0 0
\(249\) −940896. 780150.i −0.961708 0.797406i
\(250\) 0 0
\(251\) 832680. 0.834245 0.417123 0.908850i \(-0.363039\pi\)
0.417123 + 0.908850i \(0.363039\pi\)
\(252\) 0 0
\(253\) −839808. −0.824857
\(254\) 0 0
\(255\) −304128. 252170.i −0.292891 0.242852i
\(256\) 0 0
\(257\) 953914.i 0.900900i 0.892802 + 0.450450i \(0.148736\pi\)
−0.892802 + 0.450450i \(0.851264\pi\)
\(258\) 0 0
\(259\) 2.15956e6i 2.00040i
\(260\) 0 0
\(261\) 475200. 89548.9i 0.431793 0.0813690i
\(262\) 0 0
\(263\) −584496. −0.521065 −0.260533 0.965465i \(-0.583898\pi\)
−0.260533 + 0.965465i \(0.583898\pi\)
\(264\) 0 0
\(265\) 2.14790e6 1.87888
\(266\) 0 0
\(267\) −837936. + 1.01059e6i −0.719337 + 0.867554i
\(268\) 0 0
\(269\) 452361.i 0.381158i 0.981672 + 0.190579i \(0.0610365\pi\)
−0.981672 + 0.190579i \(0.938964\pi\)
\(270\) 0 0
\(271\) 1.17291e6i 0.970157i 0.874471 + 0.485078i \(0.161209\pi\)
−0.874471 + 0.485078i \(0.838791\pi\)
\(272\) 0 0
\(273\) −431244. + 520100.i −0.350200 + 0.422357i
\(274\) 0 0
\(275\) −2.08073e6 −1.65914
\(276\) 0 0
\(277\) 1.10244e6 0.863289 0.431645 0.902044i \(-0.357933\pi\)
0.431645 + 0.902044i \(0.357933\pi\)
\(278\) 0 0
\(279\) 812592. 153129.i 0.624974 0.117773i
\(280\) 0 0
\(281\) 1.77776e6i 1.34310i −0.740959 0.671550i \(-0.765629\pi\)
0.740959 0.671550i \(-0.234371\pi\)
\(282\) 0 0
\(283\) 190023.i 0.141039i 0.997510 + 0.0705195i \(0.0224657\pi\)
−0.997510 + 0.0705195i \(0.977534\pi\)
\(284\) 0 0
\(285\) 1.19750e6 + 992918.i 0.873303 + 0.724104i
\(286\) 0 0
\(287\) 2.65162e6 1.90023
\(288\) 0 0
\(289\) 1.31848e6 0.928601
\(290\) 0 0
\(291\) 1.23708e6 + 1.02573e6i 0.856378 + 0.710071i
\(292\) 0 0
\(293\) 2.55425e6i 1.73818i 0.494654 + 0.869090i \(0.335295\pi\)
−0.494654 + 0.869090i \(0.664705\pi\)
\(294\) 0 0
\(295\) 670542.i 0.448612i
\(296\) 0 0
\(297\) −1.18973e6 + 2.14702e6i −0.782630 + 1.41236i
\(298\) 0 0
\(299\) −313632. −0.202881
\(300\) 0 0
\(301\) −3.23968e6 −2.06103
\(302\) 0 0
\(303\) 829224. 1.00008e6i 0.518878 0.625790i
\(304\) 0 0
\(305\) 2.05063e6i 1.26223i
\(306\) 0 0
\(307\) 2.86001e6i 1.73190i 0.500134 + 0.865948i \(0.333284\pi\)
−0.500134 + 0.865948i \(0.666716\pi\)
\(308\) 0 0
\(309\) 454410. 548039.i 0.270740 0.326524i
\(310\) 0 0
\(311\) −2.90952e6 −1.70577 −0.852885 0.522099i \(-0.825149\pi\)
−0.852885 + 0.522099i \(0.825149\pi\)
\(312\) 0 0
\(313\) −2.56639e6 −1.48068 −0.740341 0.672231i \(-0.765336\pi\)
−0.740341 + 0.672231i \(0.765336\pi\)
\(314\) 0 0
\(315\) −641520. 3.40429e6i −0.364279 1.93308i
\(316\) 0 0
\(317\) 2.89366e6i 1.61733i −0.588267 0.808667i \(-0.700189\pi\)
0.588267 0.808667i \(-0.299811\pi\)
\(318\) 0 0
\(319\) 1.28950e6i 0.709489i
\(320\) 0 0
\(321\) 256608. + 212768.i 0.138998 + 0.115251i
\(322\) 0 0
\(323\) 399168. 0.212887
\(324\) 0 0
\(325\) −777062. −0.408082
\(326\) 0 0
\(327\) −706728. 585988.i −0.365496 0.303053i
\(328\) 0 0
\(329\) 2.32111e6i 1.18224i
\(330\) 0 0
\(331\) 3.88338e6i 1.94823i −0.226060 0.974113i \(-0.572585\pi\)
0.226060 0.974113i \(-0.427415\pi\)
\(332\) 0 0
\(333\) 542610. + 2.87941e6i 0.268150 + 1.42296i
\(334\) 0 0
\(335\) −812592. −0.395604
\(336\) 0 0
\(337\) 515746. 0.247378 0.123689 0.992321i \(-0.460527\pi\)
0.123689 + 0.992321i \(0.460527\pi\)
\(338\) 0 0
\(339\) 795168. 959009.i 0.375802 0.453235i
\(340\) 0 0
\(341\) 2.20505e6i 1.02691i
\(342\) 0 0
\(343\) 275452.i 0.126419i
\(344\) 0 0
\(345\) 1.02643e6 1.23792e6i 0.464283 0.559946i
\(346\) 0 0
\(347\) 1.41847e6 0.632408 0.316204 0.948691i \(-0.397592\pi\)
0.316204 + 0.948691i \(0.397592\pi\)
\(348\) 0 0
\(349\) 2.28138e6 1.00261 0.501307 0.865270i \(-0.332853\pi\)
0.501307 + 0.865270i \(0.332853\pi\)
\(350\) 0 0
\(351\) −444312. + 801821.i −0.192495 + 0.347384i
\(352\) 0 0
\(353\) 21014.1i 0.00897583i 0.999990 + 0.00448792i \(0.00142855\pi\)
−0.999990 + 0.00448792i \(0.998571\pi\)
\(354\) 0 0
\(355\) 4.43589e6i 1.86814i
\(356\) 0 0
\(357\) −684288. 567382.i −0.284164 0.235616i
\(358\) 0 0
\(359\) 1.98158e6 0.811477 0.405739 0.913989i \(-0.367014\pi\)
0.405739 + 0.913989i \(0.367014\pi\)
\(360\) 0 0
\(361\) 904375. 0.365242
\(362\) 0 0
\(363\) 3.10624e6 + 2.57555e6i 1.23728 + 1.02590i
\(364\) 0 0
\(365\) 2.07164e6i 0.813922i
\(366\) 0 0
\(367\) 1.22557e6i 0.474976i −0.971390 0.237488i \(-0.923676\pi\)
0.971390 0.237488i \(-0.0763240\pi\)
\(368\) 0 0
\(369\) 3.53549e6 666244.i 1.35171 0.254722i
\(370\) 0 0
\(371\) 4.83278e6 1.82290
\(372\) 0 0
\(373\) −324566. −0.120790 −0.0603950 0.998175i \(-0.519236\pi\)
−0.0603950 + 0.998175i \(0.519236\pi\)
\(374\) 0 0
\(375\) 68112.0 82146.2i 0.0250118 0.0301654i
\(376\) 0 0
\(377\) 481574.i 0.174506i
\(378\) 0 0
\(379\) 2.21168e6i 0.790904i 0.918487 + 0.395452i \(0.129412\pi\)
−0.918487 + 0.395452i \(0.870588\pi\)
\(380\) 0 0
\(381\) 1.40243e6 1.69140e6i 0.494960 0.596944i
\(382\) 0 0
\(383\) 2.66458e6 0.928178 0.464089 0.885789i \(-0.346382\pi\)
0.464089 + 0.885789i \(0.346382\pi\)
\(384\) 0 0
\(385\) −9.23789e6 −3.17630
\(386\) 0 0
\(387\) −4.31957e6 + 813999.i −1.46610 + 0.276278i
\(388\) 0 0
\(389\) 417656.i 0.139941i −0.997549 0.0699704i \(-0.977710\pi\)
0.997549 0.0699704i \(-0.0222905\pi\)
\(390\) 0 0
\(391\) 412641.i 0.136499i
\(392\) 0 0
\(393\) 3.50698e6 + 2.90783e6i 1.14538 + 0.949703i
\(394\) 0 0
\(395\) 1.52539e6 0.491913
\(396\) 0 0
\(397\) −2.01150e6 −0.640537 −0.320268 0.947327i \(-0.603773\pi\)
−0.320268 + 0.947327i \(0.603773\pi\)
\(398\) 0 0
\(399\) 2.69438e6 + 2.23407e6i 0.847281 + 0.702528i
\(400\) 0 0
\(401\) 872723.i 0.271029i 0.990775 + 0.135514i \(0.0432687\pi\)
−0.990775 + 0.135514i \(0.956731\pi\)
\(402\) 0 0
\(403\) 823491.i 0.252579i
\(404\) 0 0
\(405\) −1.71072e6 4.37787e6i −0.518252 1.32625i
\(406\) 0 0
\(407\) 7.81358e6 2.33811
\(408\) 0 0
\(409\) 1.07411e6 0.317496 0.158748 0.987319i \(-0.449254\pi\)
0.158748 + 0.987319i \(0.449254\pi\)
\(410\) 0 0
\(411\) 1.54757e6 1.86644e6i 0.451903 0.545015i
\(412\) 0 0
\(413\) 1.50872e6i 0.435245i
\(414\) 0 0
\(415\) 6.24120e6i 1.77888i
\(416\) 0 0
\(417\) 3.96851e6 4.78621e6i 1.11760 1.34788i
\(418\) 0 0
\(419\) −3.65796e6 −1.01790 −0.508949 0.860797i \(-0.669966\pi\)
−0.508949 + 0.860797i \(0.669966\pi\)
\(420\) 0 0
\(421\) 4.65190e6 1.27916 0.639580 0.768724i \(-0.279108\pi\)
0.639580 + 0.768724i \(0.279108\pi\)
\(422\) 0 0
\(423\) −583200. 3.09481e6i −0.158477 0.840975i
\(424\) 0 0
\(425\) 1.02237e6i 0.274559i
\(426\) 0 0
\(427\) 4.61392e6i 1.22462i
\(428\) 0 0
\(429\) 1.88179e6 + 1.56030e6i 0.493661 + 0.409322i
\(430\) 0 0
\(431\) −4.98960e6 −1.29382 −0.646908 0.762568i \(-0.723938\pi\)
−0.646908 + 0.762568i \(0.723938\pi\)
\(432\) 0 0
\(433\) −3.09888e6 −0.794300 −0.397150 0.917754i \(-0.630001\pi\)
−0.397150 + 0.917754i \(0.630001\pi\)
\(434\) 0 0
\(435\) 1.90080e6 + 1.57606e6i 0.481630 + 0.399346i
\(436\) 0 0
\(437\) 1.62477e6i 0.406995i
\(438\) 0 0
\(439\) 840864.i 0.208240i −0.994565 0.104120i \(-0.966797\pi\)
0.994565 0.104120i \(-0.0332026\pi\)
\(440\) 0 0
\(441\) −687105. 3.64619e6i −0.168239 0.892777i
\(442\) 0 0
\(443\) −4.72457e6 −1.14381 −0.571904 0.820321i \(-0.693795\pi\)
−0.571904 + 0.820321i \(0.693795\pi\)
\(444\) 0 0
\(445\) −6.70349e6 −1.60473
\(446\) 0 0
\(447\) 2.12494e6 2.56277e6i 0.503010 0.606653i
\(448\) 0 0
\(449\) 3.68512e6i 0.862651i 0.902196 + 0.431326i \(0.141954\pi\)
−0.902196 + 0.431326i \(0.858046\pi\)
\(450\) 0 0
\(451\) 9.59391e6i 2.22103i
\(452\) 0 0
\(453\) −1.98337e6 + 2.39203e6i −0.454106 + 0.547673i
\(454\) 0 0
\(455\) −3.44995e6 −0.781240
\(456\) 0 0
\(457\) −4.98364e6 −1.11624 −0.558118 0.829762i \(-0.688476\pi\)
−0.558118 + 0.829762i \(0.688476\pi\)
\(458\) 0 0
\(459\) −1.05494e6 584575.i −0.233721 0.129512i
\(460\) 0 0
\(461\) 1.24915e6i 0.273754i −0.990588 0.136877i \(-0.956293\pi\)
0.990588 0.136877i \(-0.0437066\pi\)
\(462\) 0 0
\(463\) 6.43122e6i 1.39425i 0.716949 + 0.697125i \(0.245538\pi\)
−0.716949 + 0.697125i \(0.754462\pi\)
\(464\) 0 0
\(465\) 3.25037e6 + 2.69506e6i 0.697108 + 0.578012i
\(466\) 0 0
\(467\) 2.04703e6 0.434343 0.217171 0.976134i \(-0.430317\pi\)
0.217171 + 0.976134i \(0.430317\pi\)
\(468\) 0 0
\(469\) −1.82833e6 −0.383816
\(470\) 0 0
\(471\) 2.34588e6 + 1.94510e6i 0.487252 + 0.404008i
\(472\) 0 0
\(473\) 1.17216e7i 2.40898i
\(474\) 0 0
\(475\) 4.02558e6i 0.818643i
\(476\) 0 0
\(477\) 6.44371e6 1.21428e6i 1.29670 0.244356i
\(478\) 0 0
\(479\) −7.01395e6 −1.39677 −0.698384 0.715724i \(-0.746097\pi\)
−0.698384 + 0.715724i \(0.746097\pi\)
\(480\) 0 0
\(481\) 2.91804e6 0.575080
\(482\) 0 0
\(483\) 2.30947e6 2.78533e6i 0.450448 0.543261i
\(484\) 0 0
\(485\) 8.20586e6i 1.58405i
\(486\) 0 0
\(487\) 4.58508e6i 0.876041i 0.898965 + 0.438021i \(0.144320\pi\)
−0.898965 + 0.438021i \(0.855680\pi\)
\(488\) 0 0
\(489\) −4.47817e6 + 5.40087e6i −0.846892 + 1.02139i
\(490\) 0 0
\(491\) 1.73210e6 0.324243 0.162121 0.986771i \(-0.448166\pi\)
0.162121 + 0.986771i \(0.448166\pi\)
\(492\) 0 0
\(493\) 633600. 0.117408
\(494\) 0 0
\(495\) −1.23172e7 + 2.32111e6i −2.25943 + 0.425777i
\(496\) 0 0
\(497\) 9.98076e6i 1.81248i
\(498\) 0 0
\(499\) 7.81171e6i 1.40441i 0.711974 + 0.702206i \(0.247801\pi\)
−0.711974 + 0.702206i \(0.752199\pi\)
\(500\) 0 0
\(501\) 4.61894e6 + 3.82983e6i 0.822145 + 0.681687i
\(502\) 0 0
\(503\) 1.49688e6 0.263795 0.131898 0.991263i \(-0.457893\pi\)
0.131898 + 0.991263i \(0.457893\pi\)
\(504\) 0 0
\(505\) 6.63379e6 1.15753
\(506\) 0 0
\(507\) −3.75275e6 3.11161e6i −0.648380 0.537608i
\(508\) 0 0
\(509\) 5.41663e6i 0.926691i −0.886178 0.463345i \(-0.846649\pi\)
0.886178 0.463345i \(-0.153351\pi\)
\(510\) 0 0
\(511\) 4.66120e6i 0.789669i
\(512\) 0 0
\(513\) 4.15384e6 + 2.30176e6i 0.696878 + 0.386160i
\(514\) 0 0
\(515\) 3.63528e6 0.603976
\(516\) 0 0
\(517\) −8.39808e6 −1.38183
\(518\) 0 0
\(519\) 485496. 585530.i 0.0791165 0.0954181i
\(520\) 0 0
\(521\) 1.00462e7i 1.62146i −0.585418 0.810731i \(-0.699070\pi\)
0.585418 0.810731i \(-0.300930\pi\)
\(522\) 0 0
\(523\) 261662.i 0.0418298i 0.999781 + 0.0209149i \(0.00665791\pi\)
−0.999781 + 0.0209149i \(0.993342\pi\)
\(524\) 0 0
\(525\) 5.72200e6 6.90099e6i 0.906045 1.09273i
\(526\) 0 0
\(527\) 1.08346e6 0.169936
\(528\) 0 0
\(529\) −4.75673e6 −0.739042
\(530\) 0 0
\(531\) 379080. + 2.01163e6i 0.0583438 + 0.309607i
\(532\) 0 0
\(533\) 3.58291e6i 0.546283i
\(534\) 0 0
\(535\) 1.70214e6i 0.257106i
\(536\) 0 0
\(537\) −7.28611e6 6.04132e6i −1.09034 0.904058i
\(538\) 0 0
\(539\) −9.89431e6 −1.46694
\(540\) 0 0
\(541\) −9.21600e6 −1.35378 −0.676892 0.736083i \(-0.736673\pi\)
−0.676892 + 0.736083i \(0.736673\pi\)
\(542\) 0 0
\(543\) 6.14220e6 + 5.09284e6i 0.893973 + 0.741243i
\(544\) 0 0
\(545\) 4.68790e6i 0.676063i
\(546\) 0 0
\(547\) 4.34724e6i 0.621220i 0.950537 + 0.310610i \(0.100533\pi\)
−0.950537 + 0.310610i \(0.899467\pi\)
\(548\) 0 0
\(549\) 1.15929e6 + 6.15189e6i 0.164158 + 0.871119i
\(550\) 0 0
\(551\) −2.49480e6 −0.350071
\(552\) 0 0
\(553\) 3.43213e6 0.477256
\(554\) 0 0
\(555\) −9.54994e6 + 1.15177e7i −1.31604 + 1.58720i
\(556\) 0 0
\(557\) 9.11544e6i 1.24491i −0.782654 0.622457i \(-0.786134\pi\)
0.782654 0.622457i \(-0.213866\pi\)
\(558\) 0 0
\(559\) 4.37751e6i 0.592512i
\(560\) 0 0
\(561\) −2.05286e6 + 2.47585e6i −0.275393 + 0.332137i
\(562\) 0 0
\(563\) 891000. 0.118470 0.0592348 0.998244i \(-0.481134\pi\)
0.0592348 + 0.998244i \(0.481134\pi\)
\(564\) 0 0
\(565\) 6.36134e6 0.838355
\(566\) 0 0
\(567\) −3.84912e6 9.85020e6i −0.502810 1.28673i
\(568\) 0 0
\(569\) 1.01544e7i 1.31485i 0.753521 + 0.657424i \(0.228354\pi\)
−0.753521 + 0.657424i \(0.771646\pi\)
\(570\) 0 0
\(571\) 4.46831e6i 0.573526i 0.958002 + 0.286763i \(0.0925792\pi\)
−0.958002 + 0.286763i \(0.907421\pi\)
\(572\) 0 0
\(573\) 2.23949e6 + 1.85689e6i 0.284946 + 0.236265i
\(574\) 0 0
\(575\) 4.16146e6 0.524899
\(576\) 0 0
\(577\) 4.65538e6 0.582124 0.291062 0.956704i \(-0.405991\pi\)
0.291062 + 0.956704i \(0.405991\pi\)
\(578\) 0 0
\(579\) 2.03676e6 + 1.68879e6i 0.252490 + 0.209353i
\(580\) 0 0
\(581\) 1.40427e7i 1.72588i
\(582\) 0 0
\(583\) 1.74857e7i 2.13064i
\(584\) 0 0
\(585\) −4.59994e6 + 866833.i −0.555728 + 0.104724i
\(586\) 0 0
\(587\) −1.33067e7 −1.59395 −0.796975 0.604013i \(-0.793568\pi\)
−0.796975 + 0.604013i \(0.793568\pi\)
\(588\) 0 0
\(589\) −4.26611e6 −0.506691
\(590\) 0 0
\(591\) −7.12246e6 + 8.59001e6i −0.838805 + 1.01164i
\(592\) 0 0
\(593\) 4.29102e6i 0.501100i −0.968104 0.250550i \(-0.919389\pi\)
0.968104 0.250550i \(-0.0806114\pi\)
\(594\) 0 0
\(595\) 4.53905e6i 0.525621i
\(596\) 0 0
\(597\) −5.93228e6 + 7.15460e6i −0.681217 + 0.821579i
\(598\) 0 0
\(599\) 3.07800e6 0.350511 0.175255 0.984523i \(-0.443925\pi\)
0.175255 + 0.984523i \(0.443925\pi\)
\(600\) 0 0
\(601\) 7.36716e6 0.831982 0.415991 0.909369i \(-0.363435\pi\)
0.415991 + 0.909369i \(0.363435\pi\)
\(602\) 0 0
\(603\) −2.43778e6 + 459386.i −0.273024 + 0.0514499i
\(604\) 0 0
\(605\) 2.06044e7i 2.28861i
\(606\) 0 0
\(607\) 2.76187e6i 0.304250i 0.988361 + 0.152125i \(0.0486117\pi\)
−0.988361 + 0.152125i \(0.951388\pi\)
\(608\) 0 0
\(609\) 4.27680e6 + 3.54614e6i 0.467278 + 0.387447i
\(610\) 0 0
\(611\) −3.13632e6 −0.339874
\(612\) 0 0
\(613\) 1.65456e7 1.77840 0.889202 0.457515i \(-0.151260\pi\)
0.889202 + 0.457515i \(0.151260\pi\)
\(614\) 0 0
\(615\) 1.41420e7 + 1.17259e7i 1.50772 + 1.25014i
\(616\) 0 0
\(617\) 7.52577e6i 0.795862i −0.917415 0.397931i \(-0.869728\pi\)
0.917415 0.397931i \(-0.130272\pi\)
\(618\) 0 0
\(619\) 1.14169e7i 1.19763i −0.800887 0.598816i \(-0.795638\pi\)
0.800887 0.598816i \(-0.204362\pi\)
\(620\) 0 0
\(621\) 2.37946e6 4.29405e6i 0.247599 0.446825i
\(622\) 0 0
\(623\) −1.50828e7 −1.55691
\(624\) 0 0
\(625\) −9.48948e6 −0.971723
\(626\) 0 0
\(627\) 8.08315e6 9.74865e6i 0.821130 0.990320i
\(628\) 0 0
\(629\) 3.83922e6i 0.386916i
\(630\) 0 0
\(631\) 1.69023e7i 1.68995i −0.534806 0.844975i \(-0.679615\pi\)
0.534806 0.844975i \(-0.320385\pi\)
\(632\) 0 0
\(633\) 3.16305e6 3.81478e6i 0.313759 0.378408i
\(634\) 0 0
\(635\) 1.12195e7 1.10418
\(636\) 0 0
\(637\) −3.69510e6 −0.360809
\(638\) 0 0
\(639\) −2.50776e6 1.33077e7i −0.242959 1.28929i
\(640\) 0 0
\(641\) 1.09089e7i 1.04866i 0.851515 + 0.524331i \(0.175684\pi\)
−0.851515 + 0.524331i \(0.824316\pi\)
\(642\) 0 0
\(643\) 4.25805e6i 0.406147i −0.979164 0.203073i \(-0.934907\pi\)
0.979164 0.203073i \(-0.0650930\pi\)
\(644\) 0 0
\(645\) −1.72783e7 1.43264e7i −1.63531 1.35593i
\(646\) 0 0
\(647\) −1.18338e7 −1.11138 −0.555690 0.831390i \(-0.687546\pi\)
−0.555690 + 0.831390i \(0.687546\pi\)
\(648\) 0 0
\(649\) 5.45875e6 0.508723
\(650\) 0 0
\(651\) 7.31333e6 + 6.06389e6i 0.676336 + 0.560788i
\(652\) 0 0
\(653\) 1.55813e7i 1.42995i 0.699152 + 0.714973i \(0.253561\pi\)
−0.699152 + 0.714973i \(0.746439\pi\)
\(654\) 0 0
\(655\) 2.32626e7i 2.11863i
\(656\) 0 0
\(657\) 1.17117e6 + 6.21493e6i 0.105854 + 0.561724i
\(658\) 0 0
\(659\) 1.04710e7 0.939239 0.469619 0.882869i \(-0.344391\pi\)
0.469619 + 0.882869i \(0.344391\pi\)
\(660\) 0 0
\(661\) 8.68177e6 0.772867 0.386433 0.922317i \(-0.373707\pi\)
0.386433 + 0.922317i \(0.373707\pi\)
\(662\) 0 0
\(663\) −766656. + 924622.i −0.0677356 + 0.0816922i
\(664\) 0 0
\(665\) 1.78725e7i 1.56723i
\(666\) 0 0
\(667\) 2.57901e6i 0.224460i
\(668\) 0 0
\(669\) −1.33472e6 + 1.60973e6i −0.115299 + 0.139055i
\(670\) 0 0
\(671\) 1.66938e7 1.43136
\(672\) 0 0
\(673\) −1.94048e7 −1.65147 −0.825737 0.564055i \(-0.809241\pi\)
−0.825737 + 0.564055i \(0.809241\pi\)
\(674\) 0 0
\(675\) 5.89540e6 1.06390e7i 0.498028 0.898758i
\(676\) 0 0
\(677\) 8.69914e6i 0.729465i −0.931112 0.364732i \(-0.881160\pi\)
0.931112 0.364732i \(-0.118840\pi\)
\(678\) 0 0
\(679\) 1.84632e7i 1.53685i
\(680\) 0 0
\(681\) −8.81021e6 7.30504e6i −0.727978 0.603608i
\(682\) 0 0
\(683\) 1.25511e7 1.02951 0.514755 0.857337i \(-0.327883\pi\)
0.514755 + 0.857337i \(0.327883\pi\)
\(684\) 0 0
\(685\) 1.23805e7 1.00812
\(686\) 0 0
\(687\) −3.80474e6 3.15473e6i −0.307563 0.255017i
\(688\) 0 0
\(689\) 6.53014e6i 0.524052i
\(690\) 0 0
\(691\) 6.02180e6i 0.479768i −0.970802 0.239884i \(-0.922891\pi\)
0.970802 0.239884i \(-0.0771094\pi\)
\(692\) 0 0
\(693\) −2.77137e7 + 5.22249e6i −2.19210 + 0.413090i
\(694\) 0 0
\(695\) 3.17481e7 2.49319
\(696\) 0 0
\(697\) 4.71398e6 0.367541
\(698\) 0 0
\(699\) −2.33006e6 + 2.81016e6i −0.180374 + 0.217540i
\(700\) 0 0
\(701\) 4.60918e6i 0.354265i −0.984187 0.177133i \(-0.943318\pi\)
0.984187 0.177133i \(-0.0566822\pi\)
\(702\) 0 0
\(703\) 1.51169e7i 1.15365i
\(704\) 0 0
\(705\) 1.02643e7 1.23792e7i 0.777781 0.938039i
\(706\) 0 0
\(707\) 1.49260e7 1.12304
\(708\) 0 0
\(709\) 5.92601e6 0.442738 0.221369 0.975190i \(-0.428947\pi\)
0.221369 + 0.975190i \(0.428947\pi\)
\(710\) 0 0
\(711\) 4.57618e6 862356.i 0.339491 0.0639753i
\(712\) 0 0
\(713\) 4.41010e6i 0.324881i
\(714\) 0 0
\(715\) 1.24824e7i 0.913131i
\(716\) 0 0
\(717\) −1.02643e6 851072.i −0.0745645 0.0618256i
\(718\) 0 0
\(719\) −1.25012e7 −0.901841 −0.450921 0.892564i \(-0.648904\pi\)
−0.450921 + 0.892564i \(0.648904\pi\)
\(720\) 0 0
\(721\) 8.17938e6 0.585979
\(722\) 0 0
\(723\) −7.99735e6 6.63105e6i −0.568985 0.471777i
\(724\) 0 0
\(725\) 6.38981e6i 0.451485i
\(726\) 0 0
\(727\) 1.56959e7i 1.10142i −0.834698 0.550708i \(-0.814358\pi\)
0.834698 0.550708i \(-0.185642\pi\)
\(728\) 0 0
\(729\) −7.60712e6 1.21665e7i −0.530153 0.847902i
\(730\) 0 0
\(731\) −5.75942e6 −0.398644
\(732\) 0 0
\(733\) 1.47330e7 1.01282 0.506410 0.862293i \(-0.330972\pi\)
0.506410 + 0.862293i \(0.330972\pi\)
\(734\) 0 0
\(735\) 1.20930e7 1.45848e7i 0.825691 0.995821i
\(736\) 0 0
\(737\) 6.61515e6i 0.448612i
\(738\) 0 0
\(739\) 6.73569e6i 0.453702i 0.973929 + 0.226851i \(0.0728431\pi\)
−0.973929 + 0.226851i \(0.927157\pi\)
\(740\) 0 0
\(741\) 3.01871e6 3.64070e6i 0.201965 0.243579i
\(742\) 0 0
\(743\) 1.46409e7 0.972962 0.486481 0.873691i \(-0.338280\pi\)
0.486481 + 0.873691i \(0.338280\pi\)
\(744\) 0 0
\(745\) 1.69995e7 1.12214
\(746\) 0 0
\(747\) −3.52836e6 1.87236e7i −0.231351 1.22769i
\(748\) 0 0
\(749\) 3.82983e6i 0.249445i
\(750\) 0 0
\(751\) 2.66574e7i 1.72472i −0.506295 0.862360i \(-0.668985\pi\)
0.506295 0.862360i \(-0.331015\pi\)
\(752\) 0 0
\(753\) 9.99216e6 + 8.28506e6i 0.642202 + 0.532486i
\(754\) 0 0
\(755\) −1.58669e7 −1.01304
\(756\) 0 0
\(757\) 2.47914e7 1.57239 0.786197 0.617976i \(-0.212047\pi\)
0.786197 + 0.617976i \(0.212047\pi\)
\(758\) 0 0
\(759\) −1.00777e7 8.35598e6i −0.634975 0.526494i
\(760\) 0 0
\(761\) 3.05085e7i 1.90968i −0.297126 0.954838i \(-0.596028\pi\)
0.297126 0.954838i \(-0.403972\pi\)
\(762\) 0 0
\(763\) 1.05478e7i 0.655918i
\(764\) 0 0
\(765\) −1.14048e6 6.05207e6i −0.0704586 0.373896i
\(766\) 0 0
\(767\) 2.03861e6 0.125125
\(768\) 0 0
\(769\) −2.46605e6 −0.150378 −0.0751892 0.997169i \(-0.523956\pi\)
−0.0751892 + 0.997169i \(0.523956\pi\)
\(770\) 0 0
\(771\) −9.49133e6 + 1.14470e7i −0.575031 + 0.693513i
\(772\) 0 0
\(773\) 1.72684e7i 1.03945i −0.854333 0.519726i \(-0.826034\pi\)
0.854333 0.519726i \(-0.173966\pi\)
\(774\) 0 0
\(775\) 1.09266e7i 0.653476i
\(776\) 0 0
\(777\) −2.14874e7 + 2.59147e7i −1.27682 + 1.53991i
\(778\) 0 0
\(779\) −1.85613e7 −1.09589
\(780\) 0 0
\(781\) −3.61117e7 −2.11846
\(782\) 0 0
\(783\) 6.59340e6 + 3.65359e6i 0.384331 + 0.212969i
\(784\) 0 0
\(785\) 1.55608e7i 0.901276i
\(786\) 0 0
\(787\) 2.74648e7i 1.58067i