Properties

Label 192.5.g
Level $192$
Weight $5$
Character orbit 192.g
Rep. character $\chi_{192}(127,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $5$
Sturm bound $160$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 192.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(160\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(192, [\chi])\).

Total New Old
Modular forms 140 16 124
Cusp forms 116 16 100
Eisenstein series 24 0 24

Trace form

\( 16 q - 432 q^{9} + O(q^{10}) \) \( 16 q - 432 q^{9} + 352 q^{13} + 480 q^{17} - 288 q^{21} + 1328 q^{25} - 1728 q^{29} + 1568 q^{37} - 1440 q^{41} - 5488 q^{49} - 960 q^{53} + 4512 q^{61} + 5376 q^{65} + 9792 q^{69} + 5280 q^{73} + 4992 q^{77} + 11664 q^{81} - 49792 q^{85} - 6240 q^{89} - 19872 q^{93} - 12640 q^{97} + O(q^{100}) \)

Decomposition of \(S_{5}^{\mathrm{new}}(192, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
192.5.g.a 192.g 4.b $2$ $19.847$ \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{6}q^{3}-6q^{5}+12\zeta_{6}q^{7}-3^{3}q^{9}+\cdots\)
192.5.g.b 192.g 4.b $2$ $19.847$ \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(84\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3\zeta_{6}q^{3}+42q^{5}-44\zeta_{6}q^{7}-3^{3}q^{9}+\cdots\)
192.5.g.c 192.g 4.b $4$ $19.847$ \(\Q(\zeta_{12})\) None \(0\) \(0\) \(-88\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{12}^{2}q^{3}+(-22-\zeta_{12}^{3})q^{5}+(-\zeta_{12}+\cdots)q^{7}+\cdots\)
192.5.g.d 192.g 4.b $4$ $19.847$ \(\Q(\sqrt{-3}, \sqrt{13})\) None \(0\) \(0\) \(-24\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-6-\beta _{2})q^{5}+(-\beta _{1}-\beta _{3})q^{7}+\cdots\)
192.5.g.e 192.g 4.b $4$ $19.847$ \(\Q(\zeta_{12})\) None \(0\) \(0\) \(40\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3\zeta_{12}^{2}q^{3}+(10-\zeta_{12}^{3})q^{5}+(-11\zeta_{12}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(192, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(192, [\chi]) \cong \) \(S_{5}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)