Properties

Label 192.4.c.c
Level $192$
Weight $4$
Character orbit 192.c
Analytic conductor $11.328$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,4,Mod(191,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + \beta_{3} q^{5} - 5 \beta_1 q^{7} + ( - \beta_{3} + 21) q^{9} + (6 \beta_{2} + 3 \beta_1) q^{11} + 26 q^{13} + (6 \beta_{2} + 27 \beta_1) q^{15} + 4 \beta_{3} q^{17} + 31 \beta_1 q^{19}+ \cdots + (126 \beta_{2} - 81 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 84 q^{9} + 104 q^{13} - 120 q^{21} - 652 q^{25} + 576 q^{33} - 824 q^{37} + 1152 q^{45} + 172 q^{49} + 744 q^{57} - 1112 q^{61} + 3456 q^{69} - 1688 q^{73} + 612 q^{81} - 4608 q^{85} - 216 q^{93}+ \cdots - 4280 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{3} - \nu^{2} + 4\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 6\nu^{3} \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 6\beta_{2} + 3\beta_1 ) / 24 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta _1 + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
−1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 + 0.707107i
1.22474 0.707107i
0 −4.89898 1.73205i 0 16.9706i 0 17.3205i 0 21.0000 + 16.9706i 0
191.2 0 −4.89898 + 1.73205i 0 16.9706i 0 17.3205i 0 21.0000 16.9706i 0
191.3 0 4.89898 1.73205i 0 16.9706i 0 17.3205i 0 21.0000 16.9706i 0
191.4 0 4.89898 + 1.73205i 0 16.9706i 0 17.3205i 0 21.0000 + 16.9706i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.4.c.c 4
3.b odd 2 1 inner 192.4.c.c 4
4.b odd 2 1 inner 192.4.c.c 4
8.b even 2 1 48.4.c.b 4
8.d odd 2 1 48.4.c.b 4
12.b even 2 1 inner 192.4.c.c 4
16.e even 4 2 768.4.f.b 8
16.f odd 4 2 768.4.f.b 8
24.f even 2 1 48.4.c.b 4
24.h odd 2 1 48.4.c.b 4
48.i odd 4 2 768.4.f.b 8
48.k even 4 2 768.4.f.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
48.4.c.b 4 8.b even 2 1
48.4.c.b 4 8.d odd 2 1
48.4.c.b 4 24.f even 2 1
48.4.c.b 4 24.h odd 2 1
192.4.c.c 4 1.a even 1 1 trivial
192.4.c.c 4 3.b odd 2 1 inner
192.4.c.c 4 4.b odd 2 1 inner
192.4.c.c 4 12.b even 2 1 inner
768.4.f.b 8 16.e even 4 2
768.4.f.b 8 16.f odd 4 2
768.4.f.b 8 48.i odd 4 2
768.4.f.b 8 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 288 \) acting on \(S_{4}^{\mathrm{new}}(192, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 42T^{2} + 729 \) Copy content Toggle raw display
$5$ \( (T^{2} + 288)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 300)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 864)^{2} \) Copy content Toggle raw display
$13$ \( (T - 26)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 4608)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 11532)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 31104)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 288)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 972)^{2} \) Copy content Toggle raw display
$37$ \( (T + 206)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 93312)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 8748)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 13824)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 2592)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 311904)^{2} \) Copy content Toggle raw display
$61$ \( (T + 278)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 792588)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 3456)^{2} \) Copy content Toggle raw display
$73$ \( (T + 422)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 446988)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 864)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 139392)^{2} \) Copy content Toggle raw display
$97$ \( (T + 1070)^{4} \) Copy content Toggle raw display
show more
show less