Properties

Label 192.4.c.b.191.4
Level $192$
Weight $4$
Character 192.191
Analytic conductor $11.328$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,4,Mod(191,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 12)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.4
Root \(-0.866025 + 1.11803i\) of defining polynomial
Character \(\chi\) \(=\) 192.191
Dual form 192.4.c.b.191.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.46410 + 3.87298i) q^{3} +8.94427i q^{5} +7.74597i q^{7} +(-3.00000 + 26.8328i) q^{9} +O(q^{10})\) \(q+(3.46410 + 3.87298i) q^{3} +8.94427i q^{5} +7.74597i q^{7} +(-3.00000 + 26.8328i) q^{9} -34.6410 q^{11} +10.0000 q^{13} +(-34.6410 + 30.9839i) q^{15} -35.7771i q^{17} +69.7137i q^{19} +(-30.0000 + 26.8328i) q^{21} -96.9948 q^{23} +45.0000 q^{25} +(-114.315 + 81.3327i) q^{27} -152.053i q^{29} +224.633i q^{31} +(-120.000 - 134.164i) q^{33} -69.2820 q^{35} +130.000 q^{37} +(34.6410 + 38.7298i) q^{39} +125.220i q^{41} +224.633i q^{43} +(-240.000 - 26.8328i) q^{45} -193.990 q^{47} +283.000 q^{49} +(138.564 - 123.935i) q^{51} +545.601i q^{53} -309.839i q^{55} +(-270.000 + 241.495i) q^{57} -173.205 q^{59} +442.000 q^{61} +(-207.846 - 23.2379i) q^{63} +89.4427i q^{65} -735.867i q^{67} +(-336.000 - 375.659i) q^{69} +1039.23 q^{71} +410.000 q^{73} +(155.885 + 174.284i) q^{75} -268.328i q^{77} -85.2056i q^{79} +(-711.000 - 160.997i) q^{81} +1254.00 q^{83} +320.000 q^{85} +(588.897 - 526.726i) q^{87} -840.762i q^{89} +77.4597i q^{91} +(-870.000 + 778.152i) q^{93} -623.538 q^{95} +770.000 q^{97} +(103.923 - 929.516i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 12 q^{9} + 40 q^{13} - 120 q^{21} + 180 q^{25} - 480 q^{33} + 520 q^{37} - 960 q^{45} + 1132 q^{49} - 1080 q^{57} + 1768 q^{61} - 1344 q^{69} + 1640 q^{73} - 2844 q^{81} + 1280 q^{85} - 3480 q^{93} + 3080 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.46410 + 3.87298i 0.666667 + 0.745356i
\(4\) 0 0
\(5\) 8.94427i 0.800000i 0.916515 + 0.400000i \(0.130990\pi\)
−0.916515 + 0.400000i \(0.869010\pi\)
\(6\) 0 0
\(7\) 7.74597i 0.418243i 0.977890 + 0.209121i \(0.0670604\pi\)
−0.977890 + 0.209121i \(0.932940\pi\)
\(8\) 0 0
\(9\) −3.00000 + 26.8328i −0.111111 + 0.993808i
\(10\) 0 0
\(11\) −34.6410 −0.949514 −0.474757 0.880117i \(-0.657464\pi\)
−0.474757 + 0.880117i \(0.657464\pi\)
\(12\) 0 0
\(13\) 10.0000 0.213346 0.106673 0.994294i \(-0.465980\pi\)
0.106673 + 0.994294i \(0.465980\pi\)
\(14\) 0 0
\(15\) −34.6410 + 30.9839i −0.596285 + 0.533333i
\(16\) 0 0
\(17\) 35.7771i 0.510425i −0.966885 0.255212i \(-0.917855\pi\)
0.966885 0.255212i \(-0.0821454\pi\)
\(18\) 0 0
\(19\) 69.7137i 0.841759i 0.907117 + 0.420879i \(0.138278\pi\)
−0.907117 + 0.420879i \(0.861722\pi\)
\(20\) 0 0
\(21\) −30.0000 + 26.8328i −0.311740 + 0.278829i
\(22\) 0 0
\(23\) −96.9948 −0.879340 −0.439670 0.898159i \(-0.644905\pi\)
−0.439670 + 0.898159i \(0.644905\pi\)
\(24\) 0 0
\(25\) 45.0000 0.360000
\(26\) 0 0
\(27\) −114.315 + 81.3327i −0.814815 + 0.579721i
\(28\) 0 0
\(29\) 152.053i 0.973637i −0.873503 0.486818i \(-0.838157\pi\)
0.873503 0.486818i \(-0.161843\pi\)
\(30\) 0 0
\(31\) 224.633i 1.30146i 0.759309 + 0.650730i \(0.225537\pi\)
−0.759309 + 0.650730i \(0.774463\pi\)
\(32\) 0 0
\(33\) −120.000 134.164i −0.633010 0.707726i
\(34\) 0 0
\(35\) −69.2820 −0.334594
\(36\) 0 0
\(37\) 130.000 0.577618 0.288809 0.957387i \(-0.406741\pi\)
0.288809 + 0.957387i \(0.406741\pi\)
\(38\) 0 0
\(39\) 34.6410 + 38.7298i 0.142231 + 0.159019i
\(40\) 0 0
\(41\) 125.220i 0.476977i 0.971145 + 0.238488i \(0.0766519\pi\)
−0.971145 + 0.238488i \(0.923348\pi\)
\(42\) 0 0
\(43\) 224.633i 0.796656i 0.917243 + 0.398328i \(0.130409\pi\)
−0.917243 + 0.398328i \(0.869591\pi\)
\(44\) 0 0
\(45\) −240.000 26.8328i −0.795046 0.0888889i
\(46\) 0 0
\(47\) −193.990 −0.602049 −0.301025 0.953616i \(-0.597329\pi\)
−0.301025 + 0.953616i \(0.597329\pi\)
\(48\) 0 0
\(49\) 283.000 0.825073
\(50\) 0 0
\(51\) 138.564 123.935i 0.380448 0.340283i
\(52\) 0 0
\(53\) 545.601i 1.41404i 0.707195 + 0.707019i \(0.249960\pi\)
−0.707195 + 0.707019i \(0.750040\pi\)
\(54\) 0 0
\(55\) 309.839i 0.759612i
\(56\) 0 0
\(57\) −270.000 + 241.495i −0.627410 + 0.561173i
\(58\) 0 0
\(59\) −173.205 −0.382193 −0.191096 0.981571i \(-0.561204\pi\)
−0.191096 + 0.981571i \(0.561204\pi\)
\(60\) 0 0
\(61\) 442.000 0.927743 0.463871 0.885903i \(-0.346460\pi\)
0.463871 + 0.885903i \(0.346460\pi\)
\(62\) 0 0
\(63\) −207.846 23.2379i −0.415653 0.0464714i
\(64\) 0 0
\(65\) 89.4427i 0.170677i
\(66\) 0 0
\(67\) 735.867i 1.34180i −0.741549 0.670899i \(-0.765908\pi\)
0.741549 0.670899i \(-0.234092\pi\)
\(68\) 0 0
\(69\) −336.000 375.659i −0.586227 0.655421i
\(70\) 0 0
\(71\) 1039.23 1.73710 0.868549 0.495603i \(-0.165053\pi\)
0.868549 + 0.495603i \(0.165053\pi\)
\(72\) 0 0
\(73\) 410.000 0.657354 0.328677 0.944442i \(-0.393397\pi\)
0.328677 + 0.944442i \(0.393397\pi\)
\(74\) 0 0
\(75\) 155.885 + 174.284i 0.240000 + 0.268328i
\(76\) 0 0
\(77\) 268.328i 0.397128i
\(78\) 0 0
\(79\) 85.2056i 0.121347i −0.998158 0.0606733i \(-0.980675\pi\)
0.998158 0.0606733i \(-0.0193248\pi\)
\(80\) 0 0
\(81\) −711.000 160.997i −0.975309 0.220846i
\(82\) 0 0
\(83\) 1254.00 1.65837 0.829186 0.558973i \(-0.188804\pi\)
0.829186 + 0.558973i \(0.188804\pi\)
\(84\) 0 0
\(85\) 320.000 0.408340
\(86\) 0 0
\(87\) 588.897 526.726i 0.725706 0.649091i
\(88\) 0 0
\(89\) 840.762i 1.00135i −0.865634 0.500677i \(-0.833084\pi\)
0.865634 0.500677i \(-0.166916\pi\)
\(90\) 0 0
\(91\) 77.4597i 0.0892305i
\(92\) 0 0
\(93\) −870.000 + 778.152i −0.970052 + 0.867641i
\(94\) 0 0
\(95\) −623.538 −0.673407
\(96\) 0 0
\(97\) 770.000 0.805996 0.402998 0.915201i \(-0.367968\pi\)
0.402998 + 0.915201i \(0.367968\pi\)
\(98\) 0 0
\(99\) 103.923 929.516i 0.105502 0.943635i
\(100\) 0 0
\(101\) 1493.69i 1.47156i −0.677218 0.735782i \(-0.736815\pi\)
0.677218 0.735782i \(-0.263185\pi\)
\(102\) 0 0
\(103\) 1355.54i 1.29675i −0.761319 0.648377i \(-0.775448\pi\)
0.761319 0.648377i \(-0.224552\pi\)
\(104\) 0 0
\(105\) −240.000 268.328i −0.223063 0.249392i
\(106\) 0 0
\(107\) −644.323 −0.582141 −0.291070 0.956702i \(-0.594011\pi\)
−0.291070 + 0.956702i \(0.594011\pi\)
\(108\) 0 0
\(109\) 1066.00 0.936737 0.468368 0.883533i \(-0.344842\pi\)
0.468368 + 0.883533i \(0.344842\pi\)
\(110\) 0 0
\(111\) 450.333 + 503.488i 0.385079 + 0.430531i
\(112\) 0 0
\(113\) 1037.54i 0.863745i 0.901935 + 0.431872i \(0.142147\pi\)
−0.901935 + 0.431872i \(0.857853\pi\)
\(114\) 0 0
\(115\) 867.548i 0.703472i
\(116\) 0 0
\(117\) −30.0000 + 268.328i −0.0237051 + 0.212025i
\(118\) 0 0
\(119\) 277.128 0.213481
\(120\) 0 0
\(121\) −131.000 −0.0984222
\(122\) 0 0
\(123\) −484.974 + 433.774i −0.355518 + 0.317985i
\(124\) 0 0
\(125\) 1520.53i 1.08800i
\(126\) 0 0
\(127\) 1835.79i 1.28268i 0.767257 + 0.641340i \(0.221621\pi\)
−0.767257 + 0.641340i \(0.778379\pi\)
\(128\) 0 0
\(129\) −870.000 + 778.152i −0.593792 + 0.531104i
\(130\) 0 0
\(131\) 450.333 0.300350 0.150175 0.988659i \(-0.452016\pi\)
0.150175 + 0.988659i \(0.452016\pi\)
\(132\) 0 0
\(133\) −540.000 −0.352060
\(134\) 0 0
\(135\) −727.461 1022.47i −0.463777 0.651852i
\(136\) 0 0
\(137\) 89.4427i 0.0557782i −0.999611 0.0278891i \(-0.991121\pi\)
0.999611 0.0278891i \(-0.00887852\pi\)
\(138\) 0 0
\(139\) 1959.73i 1.19584i 0.801555 + 0.597921i \(0.204006\pi\)
−0.801555 + 0.597921i \(0.795994\pi\)
\(140\) 0 0
\(141\) −672.000 751.319i −0.401366 0.448741i
\(142\) 0 0
\(143\) −346.410 −0.202575
\(144\) 0 0
\(145\) 1360.00 0.778909
\(146\) 0 0
\(147\) 980.341 + 1096.05i 0.550049 + 0.614973i
\(148\) 0 0
\(149\) 1618.91i 0.890111i 0.895503 + 0.445055i \(0.146816\pi\)
−0.895503 + 0.445055i \(0.853184\pi\)
\(150\) 0 0
\(151\) 565.456i 0.304743i 0.988323 + 0.152371i \(0.0486909\pi\)
−0.988323 + 0.152371i \(0.951309\pi\)
\(152\) 0 0
\(153\) 960.000 + 107.331i 0.507264 + 0.0567138i
\(154\) 0 0
\(155\) −2009.18 −1.04117
\(156\) 0 0
\(157\) 730.000 0.371085 0.185542 0.982636i \(-0.440596\pi\)
0.185542 + 0.982636i \(0.440596\pi\)
\(158\) 0 0
\(159\) −2113.10 + 1890.02i −1.05396 + 0.942692i
\(160\) 0 0
\(161\) 751.319i 0.367778i
\(162\) 0 0
\(163\) 255.617i 0.122831i 0.998112 + 0.0614155i \(0.0195615\pi\)
−0.998112 + 0.0614155i \(0.980439\pi\)
\(164\) 0 0
\(165\) 1200.00 1073.31i 0.566181 0.506408i
\(166\) 0 0
\(167\) −13.8564 −0.00642060 −0.00321030 0.999995i \(-0.501022\pi\)
−0.00321030 + 0.999995i \(0.501022\pi\)
\(168\) 0 0
\(169\) −2097.00 −0.954483
\(170\) 0 0
\(171\) −1870.61 209.141i −0.836547 0.0935288i
\(172\) 0 0
\(173\) 1118.03i 0.491344i −0.969353 0.245672i \(-0.920991\pi\)
0.969353 0.245672i \(-0.0790086\pi\)
\(174\) 0 0
\(175\) 348.569i 0.150567i
\(176\) 0 0
\(177\) −600.000 670.820i −0.254795 0.284870i
\(178\) 0 0
\(179\) −1351.00 −0.564125 −0.282063 0.959396i \(-0.591019\pi\)
−0.282063 + 0.959396i \(0.591019\pi\)
\(180\) 0 0
\(181\) −1262.00 −0.518253 −0.259126 0.965843i \(-0.583435\pi\)
−0.259126 + 0.965843i \(0.583435\pi\)
\(182\) 0 0
\(183\) 1531.13 + 1711.86i 0.618495 + 0.691499i
\(184\) 0 0
\(185\) 1162.76i 0.462094i
\(186\) 0 0
\(187\) 1239.35i 0.484656i
\(188\) 0 0
\(189\) −630.000 885.483i −0.242464 0.340791i
\(190\) 0 0
\(191\) −2771.28 −1.04986 −0.524929 0.851146i \(-0.675908\pi\)
−0.524929 + 0.851146i \(0.675908\pi\)
\(192\) 0 0
\(193\) −190.000 −0.0708627 −0.0354313 0.999372i \(-0.511281\pi\)
−0.0354313 + 0.999372i \(0.511281\pi\)
\(194\) 0 0
\(195\) −346.410 + 309.839i −0.127215 + 0.113785i
\(196\) 0 0
\(197\) 2137.68i 0.773114i −0.922266 0.386557i \(-0.873664\pi\)
0.922266 0.386557i \(-0.126336\pi\)
\(198\) 0 0
\(199\) 255.617i 0.0910563i 0.998963 + 0.0455281i \(0.0144971\pi\)
−0.998963 + 0.0455281i \(0.985503\pi\)
\(200\) 0 0
\(201\) 2850.00 2549.12i 1.00012 0.894532i
\(202\) 0 0
\(203\) 1177.79 0.407217
\(204\) 0 0
\(205\) −1120.00 −0.381581
\(206\) 0 0
\(207\) 290.985 2602.64i 0.0977045 0.873895i
\(208\) 0 0
\(209\) 2414.95i 0.799262i
\(210\) 0 0
\(211\) 549.964i 0.179436i −0.995967 0.0897181i \(-0.971403\pi\)
0.995967 0.0897181i \(-0.0285966\pi\)
\(212\) 0 0
\(213\) 3600.00 + 4024.92i 1.15807 + 1.29476i
\(214\) 0 0
\(215\) −2009.18 −0.637325
\(216\) 0 0
\(217\) −1740.00 −0.544327
\(218\) 0 0
\(219\) 1420.28 + 1587.92i 0.438236 + 0.489963i
\(220\) 0 0
\(221\) 357.771i 0.108897i
\(222\) 0 0
\(223\) 472.504i 0.141889i 0.997480 + 0.0709444i \(0.0226013\pi\)
−0.997480 + 0.0709444i \(0.977399\pi\)
\(224\) 0 0
\(225\) −135.000 + 1207.48i −0.0400000 + 0.357771i
\(226\) 0 0
\(227\) 505.759 0.147878 0.0739392 0.997263i \(-0.476443\pi\)
0.0739392 + 0.997263i \(0.476443\pi\)
\(228\) 0 0
\(229\) −4094.00 −1.18139 −0.590697 0.806894i \(-0.701147\pi\)
−0.590697 + 0.806894i \(0.701147\pi\)
\(230\) 0 0
\(231\) 1039.23 929.516i 0.296001 0.264752i
\(232\) 0 0
\(233\) 5277.12i 1.48376i 0.670534 + 0.741879i \(0.266065\pi\)
−0.670534 + 0.741879i \(0.733935\pi\)
\(234\) 0 0
\(235\) 1735.10i 0.481639i
\(236\) 0 0
\(237\) 330.000 295.161i 0.0904464 0.0808977i
\(238\) 0 0
\(239\) 5681.13 1.53758 0.768790 0.639502i \(-0.220859\pi\)
0.768790 + 0.639502i \(0.220859\pi\)
\(240\) 0 0
\(241\) −1198.00 −0.320207 −0.160104 0.987100i \(-0.551183\pi\)
−0.160104 + 0.987100i \(0.551183\pi\)
\(242\) 0 0
\(243\) −1839.44 3311.40i −0.485597 0.874183i
\(244\) 0 0
\(245\) 2531.23i 0.660058i
\(246\) 0 0
\(247\) 697.137i 0.179586i
\(248\) 0 0
\(249\) 4344.00 + 4856.74i 1.10558 + 1.23608i
\(250\) 0 0
\(251\) 4260.84 1.07148 0.535741 0.844382i \(-0.320032\pi\)
0.535741 + 0.844382i \(0.320032\pi\)
\(252\) 0 0
\(253\) 3360.00 0.834946
\(254\) 0 0
\(255\) 1108.51 + 1239.35i 0.272226 + 0.304358i
\(256\) 0 0
\(257\) 3148.38i 0.764166i −0.924128 0.382083i \(-0.875207\pi\)
0.924128 0.382083i \(-0.124793\pi\)
\(258\) 0 0
\(259\) 1006.98i 0.241585i
\(260\) 0 0
\(261\) 4080.00 + 456.158i 0.967608 + 0.108182i
\(262\) 0 0
\(263\) 4253.92 0.997368 0.498684 0.866784i \(-0.333817\pi\)
0.498684 + 0.866784i \(0.333817\pi\)
\(264\) 0 0
\(265\) −4880.00 −1.13123
\(266\) 0 0
\(267\) 3256.26 2912.48i 0.746366 0.667570i
\(268\) 0 0
\(269\) 44.7214i 0.0101365i −0.999987 0.00506823i \(-0.998387\pi\)
0.999987 0.00506823i \(-0.00161328\pi\)
\(270\) 0 0
\(271\) 8760.69i 1.96374i −0.189552 0.981871i \(-0.560704\pi\)
0.189552 0.981871i \(-0.439296\pi\)
\(272\) 0 0
\(273\) −300.000 + 268.328i −0.0665085 + 0.0594870i
\(274\) 0 0
\(275\) −1558.85 −0.341825
\(276\) 0 0
\(277\) −6350.00 −1.37738 −0.688690 0.725055i \(-0.741814\pi\)
−0.688690 + 0.725055i \(0.741814\pi\)
\(278\) 0 0
\(279\) −6027.54 673.899i −1.29340 0.144607i
\(280\) 0 0
\(281\) 5563.34i 1.18107i −0.807012 0.590535i \(-0.798917\pi\)
0.807012 0.590535i \(-0.201083\pi\)
\(282\) 0 0
\(283\) 6777.72i 1.42365i −0.702356 0.711826i \(-0.747868\pi\)
0.702356 0.711826i \(-0.252132\pi\)
\(284\) 0 0
\(285\) −2160.00 2414.95i −0.448938 0.501928i
\(286\) 0 0
\(287\) −969.948 −0.199492
\(288\) 0 0
\(289\) 3633.00 0.739467
\(290\) 0 0
\(291\) 2667.36 + 2982.20i 0.537331 + 0.600754i
\(292\) 0 0
\(293\) 652.932i 0.130187i 0.997879 + 0.0650933i \(0.0207345\pi\)
−0.997879 + 0.0650933i \(0.979265\pi\)
\(294\) 0 0
\(295\) 1549.19i 0.305754i
\(296\) 0 0
\(297\) 3960.00 2817.45i 0.773678 0.550454i
\(298\) 0 0
\(299\) −969.948 −0.187604
\(300\) 0 0
\(301\) −1740.00 −0.333196
\(302\) 0 0
\(303\) 5785.05 5174.31i 1.09684 0.981043i
\(304\) 0 0
\(305\) 3953.37i 0.742194i
\(306\) 0 0
\(307\) 1556.94i 0.289444i 0.989472 + 0.144722i \(0.0462287\pi\)
−0.989472 + 0.144722i \(0.953771\pi\)
\(308\) 0 0
\(309\) 5250.00 4695.74i 0.966544 0.864503i
\(310\) 0 0
\(311\) −3256.26 −0.593715 −0.296857 0.954922i \(-0.595939\pi\)
−0.296857 + 0.954922i \(0.595939\pi\)
\(312\) 0 0
\(313\) −7030.00 −1.26952 −0.634759 0.772710i \(-0.718901\pi\)
−0.634759 + 0.772710i \(0.718901\pi\)
\(314\) 0 0
\(315\) 207.846 1859.03i 0.0371771 0.332522i
\(316\) 0 0
\(317\) 491.935i 0.0871603i 0.999050 + 0.0435802i \(0.0138764\pi\)
−0.999050 + 0.0435802i \(0.986124\pi\)
\(318\) 0 0
\(319\) 5267.26i 0.924482i
\(320\) 0 0
\(321\) −2232.00 2495.45i −0.388094 0.433902i
\(322\) 0 0
\(323\) 2494.15 0.429654
\(324\) 0 0
\(325\) 450.000 0.0768046
\(326\) 0 0
\(327\) 3692.73 + 4128.60i 0.624491 + 0.698202i
\(328\) 0 0
\(329\) 1502.64i 0.251803i
\(330\) 0 0
\(331\) 4237.04i 0.703592i −0.936077 0.351796i \(-0.885571\pi\)
0.936077 0.351796i \(-0.114429\pi\)
\(332\) 0 0
\(333\) −390.000 + 3488.27i −0.0641798 + 0.574041i
\(334\) 0 0
\(335\) 6581.79 1.07344
\(336\) 0 0
\(337\) 1490.00 0.240847 0.120424 0.992723i \(-0.461575\pi\)
0.120424 + 0.992723i \(0.461575\pi\)
\(338\) 0 0
\(339\) −4018.36 + 3594.13i −0.643797 + 0.575830i
\(340\) 0 0
\(341\) 7781.52i 1.23576i
\(342\) 0 0
\(343\) 4848.98i 0.763324i
\(344\) 0 0
\(345\) 3360.00 3005.28i 0.524337 0.468981i
\(346\) 0 0
\(347\) 1988.39 0.307616 0.153808 0.988101i \(-0.450846\pi\)
0.153808 + 0.988101i \(0.450846\pi\)
\(348\) 0 0
\(349\) 2074.00 0.318105 0.159053 0.987270i \(-0.449156\pi\)
0.159053 + 0.987270i \(0.449156\pi\)
\(350\) 0 0
\(351\) −1143.15 + 813.327i −0.173838 + 0.123681i
\(352\) 0 0
\(353\) 8658.06i 1.30544i 0.757597 + 0.652722i \(0.226373\pi\)
−0.757597 + 0.652722i \(0.773627\pi\)
\(354\) 0 0
\(355\) 9295.16i 1.38968i
\(356\) 0 0
\(357\) 960.000 + 1073.31i 0.142321 + 0.159120i
\(358\) 0 0
\(359\) −8106.00 −1.19169 −0.595847 0.803098i \(-0.703184\pi\)
−0.595847 + 0.803098i \(0.703184\pi\)
\(360\) 0 0
\(361\) 1999.00 0.291442
\(362\) 0 0
\(363\) −453.797 507.361i −0.0656148 0.0733596i
\(364\) 0 0
\(365\) 3667.15i 0.525884i
\(366\) 0 0
\(367\) 7893.14i 1.12267i −0.827590 0.561333i \(-0.810289\pi\)
0.827590 0.561333i \(-0.189711\pi\)
\(368\) 0 0
\(369\) −3360.00 375.659i −0.474023 0.0529974i
\(370\) 0 0
\(371\) −4226.20 −0.591411
\(372\) 0 0
\(373\) −4910.00 −0.681582 −0.340791 0.940139i \(-0.610695\pi\)
−0.340791 + 0.940139i \(0.610695\pi\)
\(374\) 0 0
\(375\) −5888.97 + 5267.26i −0.810947 + 0.725333i
\(376\) 0 0
\(377\) 1520.53i 0.207722i
\(378\) 0 0
\(379\) 3137.12i 0.425179i 0.977142 + 0.212590i \(0.0681897\pi\)
−0.977142 + 0.212590i \(0.931810\pi\)
\(380\) 0 0
\(381\) −7110.00 + 6359.38i −0.956053 + 0.855120i
\(382\) 0 0
\(383\) −6207.67 −0.828191 −0.414095 0.910233i \(-0.635902\pi\)
−0.414095 + 0.910233i \(0.635902\pi\)
\(384\) 0 0
\(385\) 2400.00 0.317702
\(386\) 0 0
\(387\) −6027.54 673.899i −0.791723 0.0885174i
\(388\) 0 0
\(389\) 9454.10i 1.23224i 0.787652 + 0.616120i \(0.211297\pi\)
−0.787652 + 0.616120i \(0.788703\pi\)
\(390\) 0 0
\(391\) 3470.19i 0.448837i
\(392\) 0 0
\(393\) 1560.00 + 1744.13i 0.200233 + 0.223867i
\(394\) 0 0
\(395\) 762.102 0.0970773
\(396\) 0 0
\(397\) 10570.0 1.33625 0.668127 0.744047i \(-0.267096\pi\)
0.668127 + 0.744047i \(0.267096\pi\)
\(398\) 0 0
\(399\) −1870.61 2091.41i −0.234706 0.262410i
\(400\) 0 0
\(401\) 1681.52i 0.209405i 0.994504 + 0.104702i \(0.0333890\pi\)
−0.994504 + 0.104702i \(0.966611\pi\)
\(402\) 0 0
\(403\) 2246.33i 0.277662i
\(404\) 0 0
\(405\) 1440.00 6359.38i 0.176677 0.780247i
\(406\) 0 0
\(407\) −4503.33 −0.548457
\(408\) 0 0
\(409\) −3574.00 −0.432085 −0.216043 0.976384i \(-0.569315\pi\)
−0.216043 + 0.976384i \(0.569315\pi\)
\(410\) 0 0
\(411\) 346.410 309.839i 0.0415746 0.0371854i
\(412\) 0 0
\(413\) 1341.64i 0.159849i
\(414\) 0 0
\(415\) 11216.2i 1.32670i
\(416\) 0 0
\(417\) −7590.00 + 6788.70i −0.891328 + 0.797228i
\(418\) 0 0
\(419\) −15346.0 −1.78926 −0.894630 0.446808i \(-0.852561\pi\)
−0.894630 + 0.446808i \(0.852561\pi\)
\(420\) 0 0
\(421\) −3518.00 −0.407261 −0.203630 0.979048i \(-0.565274\pi\)
−0.203630 + 0.979048i \(0.565274\pi\)
\(422\) 0 0
\(423\) 581.969 5205.29i 0.0668943 0.598321i
\(424\) 0 0
\(425\) 1609.97i 0.183753i
\(426\) 0 0
\(427\) 3423.72i 0.388022i
\(428\) 0 0
\(429\) −1200.00 1341.64i −0.135050 0.150991i
\(430\) 0 0
\(431\) 12886.5 1.44018 0.720091 0.693879i \(-0.244100\pi\)
0.720091 + 0.693879i \(0.244100\pi\)
\(432\) 0 0
\(433\) 14450.0 1.60375 0.801874 0.597493i \(-0.203837\pi\)
0.801874 + 0.597493i \(0.203837\pi\)
\(434\) 0 0
\(435\) 4711.18 + 5267.26i 0.519273 + 0.580565i
\(436\) 0 0
\(437\) 6761.87i 0.740192i
\(438\) 0 0
\(439\) 15065.9i 1.63794i 0.573835 + 0.818971i \(0.305455\pi\)
−0.573835 + 0.818971i \(0.694545\pi\)
\(440\) 0 0
\(441\) −849.000 + 7593.69i −0.0916748 + 0.819964i
\(442\) 0 0
\(443\) 3041.48 0.326197 0.163098 0.986610i \(-0.447851\pi\)
0.163098 + 0.986610i \(0.447851\pi\)
\(444\) 0 0
\(445\) 7520.00 0.801084
\(446\) 0 0
\(447\) −6270.02 + 5608.08i −0.663450 + 0.593407i
\(448\) 0 0
\(449\) 14310.8i 1.50416i −0.659069 0.752082i \(-0.729049\pi\)
0.659069 0.752082i \(-0.270951\pi\)
\(450\) 0 0
\(451\) 4337.74i 0.452896i
\(452\) 0 0
\(453\) −2190.00 + 1958.80i −0.227142 + 0.203162i
\(454\) 0 0
\(455\) −692.820 −0.0713844
\(456\) 0 0
\(457\) −3430.00 −0.351091 −0.175546 0.984471i \(-0.556169\pi\)
−0.175546 + 0.984471i \(0.556169\pi\)
\(458\) 0 0
\(459\) 2909.85 + 4089.87i 0.295904 + 0.415902i
\(460\) 0 0
\(461\) 3908.65i 0.394889i −0.980314 0.197445i \(-0.936736\pi\)
0.980314 0.197445i \(-0.0632642\pi\)
\(462\) 0 0
\(463\) 18179.8i 1.82481i −0.409291 0.912404i \(-0.634224\pi\)
0.409291 0.912404i \(-0.365776\pi\)
\(464\) 0 0
\(465\) −6960.00 7781.52i −0.694112 0.776041i
\(466\) 0 0
\(467\) −1849.83 −0.183298 −0.0916488 0.995791i \(-0.529214\pi\)
−0.0916488 + 0.995791i \(0.529214\pi\)
\(468\) 0 0
\(469\) 5700.00 0.561197
\(470\) 0 0
\(471\) 2528.79 + 2827.28i 0.247390 + 0.276590i
\(472\) 0 0
\(473\) 7781.52i 0.756437i
\(474\) 0 0
\(475\) 3137.12i 0.303033i
\(476\) 0 0
\(477\) −14640.0 1636.80i −1.40528 0.157115i
\(478\) 0 0
\(479\) −15242.0 −1.45392 −0.726959 0.686681i \(-0.759067\pi\)
−0.726959 + 0.686681i \(0.759067\pi\)
\(480\) 0 0
\(481\) 1300.00 0.123233
\(482\) 0 0
\(483\) 2909.85 2602.64i 0.274125 0.245185i
\(484\) 0 0
\(485\) 6887.09i 0.644797i
\(486\) 0 0
\(487\) 9783.16i 0.910302i −0.890414 0.455151i \(-0.849585\pi\)
0.890414 0.455151i \(-0.150415\pi\)
\(488\) 0 0
\(489\) −990.000 + 885.483i −0.0915529 + 0.0818874i
\(490\) 0 0
\(491\) 6893.56 0.633609 0.316805 0.948491i \(-0.397390\pi\)
0.316805 + 0.948491i \(0.397390\pi\)
\(492\) 0 0
\(493\) −5440.00 −0.496968
\(494\) 0 0
\(495\) 8313.84 + 929.516i 0.754908 + 0.0844013i
\(496\) 0 0
\(497\) 8049.84i 0.726529i
\(498\) 0 0
\(499\) 1309.07i 0.117439i 0.998275 + 0.0587194i \(0.0187017\pi\)
−0.998275 + 0.0587194i \(0.981298\pi\)
\(500\) 0 0
\(501\) −48.0000 53.6656i −0.00428040 0.00478564i
\(502\) 0 0
\(503\) 7939.72 0.703806 0.351903 0.936036i \(-0.385535\pi\)
0.351903 + 0.936036i \(0.385535\pi\)
\(504\) 0 0
\(505\) 13360.0 1.17725
\(506\) 0 0
\(507\) −7264.22 8121.65i −0.636322 0.711430i
\(508\) 0 0
\(509\) 14534.4i 1.26567i −0.774285 0.632837i \(-0.781890\pi\)
0.774285 0.632837i \(-0.218110\pi\)
\(510\) 0 0
\(511\) 3175.85i 0.274934i
\(512\) 0 0
\(513\) −5670.00 7969.35i −0.487986 0.685878i
\(514\) 0 0
\(515\) 12124.4 1.03740
\(516\) 0 0
\(517\) 6720.00 0.571654
\(518\) 0 0
\(519\) 4330.13 3872.98i 0.366226 0.327563i
\(520\) 0 0
\(521\) 9355.71i 0.786720i 0.919385 + 0.393360i \(0.128687\pi\)
−0.919385 + 0.393360i \(0.871313\pi\)
\(522\) 0 0
\(523\) 10062.0i 0.841264i −0.907231 0.420632i \(-0.861808\pi\)
0.907231 0.420632i \(-0.138192\pi\)
\(524\) 0 0
\(525\) −1350.00 + 1207.48i −0.112226 + 0.100378i
\(526\) 0 0
\(527\) 8036.72 0.664298
\(528\) 0 0
\(529\) −2759.00 −0.226761
\(530\) 0 0
\(531\) 519.615 4647.58i 0.0424659 0.379826i
\(532\) 0 0
\(533\) 1252.20i 0.101761i
\(534\) 0 0
\(535\) 5763.00i 0.465712i
\(536\) 0 0
\(537\) −4680.00 5232.40i −0.376084 0.420474i
\(538\) 0 0
\(539\) −9803.41 −0.783419
\(540\) 0 0
\(541\) 23962.0 1.90426 0.952132 0.305687i \(-0.0988862\pi\)
0.952132 + 0.305687i \(0.0988862\pi\)
\(542\) 0 0
\(543\) −4371.70 4887.70i −0.345502 0.386283i
\(544\) 0 0
\(545\) 9534.59i 0.749389i
\(546\) 0 0
\(547\) 15112.4i 1.18128i −0.806936 0.590639i \(-0.798876\pi\)
0.806936 0.590639i \(-0.201124\pi\)
\(548\) 0 0
\(549\) −1326.00 + 11860.1i −0.103083 + 0.921998i
\(550\) 0 0
\(551\) 10600.2 0.819567
\(552\) 0 0
\(553\) 660.000 0.0507524
\(554\) 0 0
\(555\) −4503.33 + 4027.90i −0.344425 + 0.308063i
\(556\) 0 0
\(557\) 16055.0i 1.22131i 0.791896 + 0.610656i \(0.209094\pi\)
−0.791896 + 0.610656i \(0.790906\pi\)
\(558\) 0 0
\(559\) 2246.33i 0.169964i
\(560\) 0 0
\(561\) −4800.00 + 4293.25i −0.361241 + 0.323104i
\(562\) 0 0
\(563\) 25142.4 1.88211 0.941055 0.338254i \(-0.109836\pi\)
0.941055 + 0.338254i \(0.109836\pi\)
\(564\) 0 0
\(565\) −9280.00 −0.690996
\(566\) 0 0
\(567\) 1247.08 5507.38i 0.0923674 0.407916i
\(568\) 0 0
\(569\) 23416.1i 1.72523i 0.505864 + 0.862613i \(0.331174\pi\)
−0.505864 + 0.862613i \(0.668826\pi\)
\(570\) 0 0
\(571\) 4918.69i 0.360492i −0.983622 0.180246i \(-0.942311\pi\)
0.983622 0.180246i \(-0.0576893\pi\)
\(572\) 0 0
\(573\) −9600.00 10733.1i −0.699905 0.782518i
\(574\) 0 0
\(575\) −4364.77 −0.316562
\(576\) 0 0
\(577\) 19490.0 1.40620 0.703102 0.711089i \(-0.251798\pi\)
0.703102 + 0.711089i \(0.251798\pi\)
\(578\) 0 0
\(579\) −658.179 735.867i −0.0472418 0.0528179i
\(580\) 0 0
\(581\) 9713.48i 0.693602i
\(582\) 0 0
\(583\) 18900.2i 1.34265i
\(584\) 0 0
\(585\) −2400.00 268.328i −0.169620 0.0189641i
\(586\) 0 0
\(587\) −1364.86 −0.0959687 −0.0479844 0.998848i \(-0.515280\pi\)
−0.0479844 + 0.998848i \(0.515280\pi\)
\(588\) 0 0
\(589\) −15660.0 −1.09552
\(590\) 0 0
\(591\) 8279.20 7405.14i 0.576245 0.515409i
\(592\) 0 0
\(593\) 25795.3i 1.78632i −0.449743 0.893158i \(-0.648485\pi\)
0.449743 0.893158i \(-0.351515\pi\)
\(594\) 0 0
\(595\) 2478.71i 0.170785i
\(596\) 0 0
\(597\) −990.000 + 885.483i −0.0678694 + 0.0607042i
\(598\) 0 0
\(599\) −2424.87 −0.165405 −0.0827025 0.996574i \(-0.526355\pi\)
−0.0827025 + 0.996574i \(0.526355\pi\)
\(600\) 0 0
\(601\) −8758.00 −0.594420 −0.297210 0.954812i \(-0.596056\pi\)
−0.297210 + 0.954812i \(0.596056\pi\)
\(602\) 0 0
\(603\) 19745.4 + 2207.60i 1.33349 + 0.149089i
\(604\) 0 0
\(605\) 1171.70i 0.0787378i
\(606\) 0 0
\(607\) 19558.6i 1.30784i 0.756565 + 0.653919i \(0.226876\pi\)
−0.756565 + 0.653919i \(0.773124\pi\)
\(608\) 0 0
\(609\) 4080.00 + 4561.58i 0.271478 + 0.303521i
\(610\) 0 0
\(611\) −1939.90 −0.128445
\(612\) 0 0
\(613\) 16450.0 1.08386 0.541932 0.840422i \(-0.317693\pi\)
0.541932 + 0.840422i \(0.317693\pi\)
\(614\) 0 0
\(615\) −3879.79 4337.74i −0.254388 0.284414i
\(616\) 0 0
\(617\) 8461.28i 0.552088i −0.961145 0.276044i \(-0.910976\pi\)
0.961145 0.276044i \(-0.0890236\pi\)
\(618\) 0 0
\(619\) 19930.4i 1.29413i 0.762433 + 0.647067i \(0.224005\pi\)
−0.762433 + 0.647067i \(0.775995\pi\)
\(620\) 0 0
\(621\) 11088.0 7888.85i 0.716499 0.509772i
\(622\) 0 0
\(623\) 6512.51 0.418809
\(624\) 0 0
\(625\) −7975.00 −0.510400
\(626\) 0 0
\(627\) 9353.07 8365.64i 0.595735 0.532842i
\(628\) 0 0
\(629\) 4651.02i 0.294830i
\(630\) 0 0
\(631\) 12199.9i 0.769683i −0.922983 0.384842i \(-0.874256\pi\)
0.922983 0.384842i \(-0.125744\pi\)
\(632\) 0 0
\(633\) 2130.00 1905.13i 0.133744 0.119624i
\(634\) 0 0
\(635\) −16419.8 −1.02614
\(636\) 0 0
\(637\) 2830.00 0.176026
\(638\) 0 0
\(639\) −3117.69 + 27885.5i −0.193011 + 1.72634i
\(640\) 0 0
\(641\) 7012.31i 0.432090i −0.976383 0.216045i \(-0.930684\pi\)
0.976383 0.216045i \(-0.0693158\pi\)
\(642\) 0 0
\(643\) 15979.9i 0.980073i −0.871702 0.490036i \(-0.836983\pi\)
0.871702 0.490036i \(-0.163017\pi\)
\(644\) 0 0
\(645\) −6960.00 7781.52i −0.424883 0.475034i
\(646\) 0 0
\(647\) 17999.5 1.09371 0.546856 0.837226i \(-0.315824\pi\)
0.546856 + 0.837226i \(0.315824\pi\)
\(648\) 0 0
\(649\) 6000.00 0.362898
\(650\) 0 0
\(651\) −6027.54 6738.99i −0.362884 0.405717i
\(652\) 0 0
\(653\) 5196.62i 0.311423i −0.987803 0.155712i \(-0.950233\pi\)
0.987803 0.155712i \(-0.0497671\pi\)
\(654\) 0 0
\(655\) 4027.90i 0.240280i
\(656\) 0 0
\(657\) −1230.00 + 11001.5i −0.0730394 + 0.653284i
\(658\) 0 0
\(659\) −6062.18 −0.358344 −0.179172 0.983818i \(-0.557342\pi\)
−0.179172 + 0.983818i \(0.557342\pi\)
\(660\) 0 0
\(661\) −9422.00 −0.554423 −0.277211 0.960809i \(-0.589410\pi\)
−0.277211 + 0.960809i \(0.589410\pi\)
\(662\) 0 0
\(663\) 1385.64 1239.35i 0.0811672 0.0725981i
\(664\) 0 0
\(665\) 4829.91i 0.281648i
\(666\) 0 0
\(667\) 14748.3i 0.856158i
\(668\) 0 0
\(669\) −1830.00 + 1636.80i −0.105758 + 0.0945925i
\(670\) 0 0
\(671\) −15311.3 −0.880905
\(672\) 0 0
\(673\) −17470.0 −1.00062 −0.500311 0.865846i \(-0.666781\pi\)
−0.500311 + 0.865846i \(0.666781\pi\)
\(674\) 0 0
\(675\) −5144.19 + 3659.97i −0.293333 + 0.208700i
\(676\) 0 0
\(677\) 20813.3i 1.18157i −0.806830 0.590784i \(-0.798819\pi\)
0.806830 0.590784i \(-0.201181\pi\)
\(678\) 0 0
\(679\) 5964.39i 0.337102i
\(680\) 0 0
\(681\) 1752.00 + 1958.80i 0.0985856 + 0.110222i
\(682\) 0 0
\(683\) −12616.3 −0.706805 −0.353402 0.935471i \(-0.614975\pi\)
−0.353402 + 0.935471i \(0.614975\pi\)
\(684\) 0 0
\(685\) 800.000 0.0446225
\(686\) 0 0
\(687\) −14182.0 15856.0i −0.787596 0.880559i
\(688\) 0 0
\(689\) 5456.01i 0.301680i
\(690\) 0 0
\(691\) 3028.67i 0.166738i −0.996519 0.0833691i \(-0.973432\pi\)
0.996519 0.0833691i \(-0.0265681\pi\)
\(692\) 0 0
\(693\) 7200.00 + 804.984i 0.394669 + 0.0441253i
\(694\) 0 0
\(695\) −17528.4 −0.956674
\(696\) 0 0
\(697\) 4480.00 0.243461
\(698\) 0 0
\(699\) −20438.2 + 18280.5i −1.10593 + 0.989172i
\(700\) 0 0
\(701\) 17664.9i 0.951777i 0.879506 + 0.475888i \(0.157873\pi\)
−0.879506 + 0.475888i \(0.842127\pi\)
\(702\) 0 0
\(703\) 9062.78i 0.486215i
\(704\) 0 0
\(705\) 6720.00 6010.55i 0.358993 0.321093i
\(706\) 0 0
\(707\) 11570.1 0.615472
\(708\) 0 0
\(709\) −14174.0 −0.750798 −0.375399 0.926863i \(-0.622494\pi\)
−0.375399 + 0.926863i \(0.622494\pi\)
\(710\) 0 0
\(711\) 2286.31 + 255.617i 0.120595 + 0.0134830i
\(712\) 0 0
\(713\) 21788.2i 1.14443i
\(714\) 0 0
\(715\) 3098.39i 0.162060i
\(716\) 0 0
\(717\) 19680.0 + 22002.9i 1.02505 + 1.14604i
\(718\) 0 0
\(719\) −32839.7 −1.70336 −0.851678 0.524065i \(-0.824415\pi\)
−0.851678 + 0.524065i \(0.824415\pi\)
\(720\) 0 0
\(721\) 10500.0 0.542358
\(722\) 0 0
\(723\) −4149.99 4639.83i −0.213472 0.238668i
\(724\) 0 0
\(725\) 6842.37i 0.350509i
\(726\) 0 0
\(727\) 8001.58i 0.408201i 0.978950 + 0.204101i \(0.0654270\pi\)
−0.978950 + 0.204101i \(0.934573\pi\)
\(728\) 0 0
\(729\) 6453.00 18595.1i 0.327846 0.944731i
\(730\) 0 0
\(731\) 8036.72 0.406633
\(732\) 0 0
\(733\) −11750.0 −0.592082 −0.296041 0.955175i \(-0.595667\pi\)
−0.296041 + 0.955175i \(0.595667\pi\)
\(734\) 0 0
\(735\) −9803.41 + 8768.43i −0.491978 + 0.440039i
\(736\) 0 0
\(737\) 25491.2i 1.27406i
\(738\) 0 0
\(739\) 19961.4i 0.993627i 0.867857 + 0.496814i \(0.165497\pi\)
−0.867857 + 0.496814i \(0.834503\pi\)
\(740\) 0 0
\(741\) −2700.00 + 2414.95i −0.133856 + 0.119724i
\(742\) 0 0
\(743\) 25592.8 1.26367 0.631836 0.775102i \(-0.282302\pi\)
0.631836 + 0.775102i \(0.282302\pi\)
\(744\) 0 0
\(745\) −14480.0 −0.712089
\(746\) 0 0
\(747\) −3762.01 + 33648.5i −0.184264 + 1.64810i
\(748\) 0 0
\(749\) 4990.90i 0.243476i
\(750\) 0 0
\(751\) 5244.02i 0.254803i 0.991851 + 0.127401i \(0.0406637\pi\)
−0.991851 + 0.127401i \(0.959336\pi\)
\(752\) 0 0
\(753\) 14760.0 + 16502.2i 0.714322 + 0.798636i
\(754\) 0 0
\(755\) −5057.59 −0.243794
\(756\) 0 0
\(757\) 14290.0 0.686102 0.343051 0.939317i \(-0.388540\pi\)
0.343051 + 0.939317i \(0.388540\pi\)
\(758\) 0 0
\(759\) 11639.4 + 13013.2i 0.556631 + 0.622332i
\(760\) 0 0
\(761\) 16976.2i 0.808657i 0.914614 + 0.404328i \(0.132495\pi\)
−0.914614 + 0.404328i \(0.867505\pi\)
\(762\) 0 0
\(763\) 8257.20i 0.391783i
\(764\) 0 0
\(765\) −960.000 + 8586.50i −0.0453711 + 0.405811i
\(766\) 0 0
\(767\) −1732.05 −0.0815394
\(768\) 0 0
\(769\) −29566.0 −1.38645 −0.693223 0.720723i \(-0.743810\pi\)
−0.693223 + 0.720723i \(0.743810\pi\)
\(770\) 0 0
\(771\) 12193.6 10906.3i 0.569576 0.509444i
\(772\) 0 0
\(773\) 21457.3i 0.998403i −0.866486 0.499202i \(-0.833627\pi\)
0.866486 0.499202i \(-0.166373\pi\)
\(774\) 0 0
\(775\) 10108.5i 0.468526i
\(776\) 0 0
\(777\) −3900.00 + 3488.27i −0.180067 + 0.161056i
\(778\) 0 0
\(779\) −8729.54 −0.401499
\(780\) 0 0
\(781\) −36000.0 −1.64940
\(782\) 0 0
\(783\) 12366.8 + 17381.9i 0.564438 + 0.793334i
\(784\) 0 0
\(785\) 6529.32i 0.296868i
\(786\) 0 0
\(787\) 3896.22i 0.176474i −0.996099 0.0882372i \(-0.971877\pi\)
0.996099 0.0882372i \(-0.0281233\pi\)
\(788\) 0 0
\(789\) 14736.0 + 16475.3i 0.664912 + 0.743394i
\(790\) 0 0
\(791\) −8036.72 −0.361255
\(792\) 0 0