Properties

Label 192.4.a
Level $192$
Weight $4$
Character orbit 192.a
Rep. character $\chi_{192}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $12$
Sturm bound $128$
Trace bound $5$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(128\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(192))\).

Total New Old
Modular forms 108 12 96
Cusp forms 84 12 72
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim.
\(+\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(4\)
Plus space\(+\)\(7\)
Minus space\(-\)\(5\)

Trace form

\( 12q + 108q^{9} + O(q^{10}) \) \( 12q + 108q^{9} - 72q^{13} + 104q^{17} + 120q^{21} + 212q^{25} + 400q^{29} + 520q^{37} - 472q^{41} + 588q^{49} - 752q^{53} + 1992q^{61} - 1536q^{65} + 528q^{69} - 296q^{73} - 5408q^{77} + 972q^{81} - 2592q^{85} + 88q^{89} + 1848q^{93} - 328q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(192))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3
192.4.a.a \(1\) \(11.328\) \(\Q\) None \(0\) \(-3\) \(-14\) \(-24\) \(+\) \(+\) \(q-3q^{3}-14q^{5}-24q^{7}+9q^{9}+28q^{11}+\cdots\)
192.4.a.b \(1\) \(11.328\) \(\Q\) None \(0\) \(-3\) \(-10\) \(4\) \(+\) \(+\) \(q-3q^{3}-10q^{5}+4q^{7}+9q^{9}+20q^{11}+\cdots\)
192.4.a.c \(1\) \(11.328\) \(\Q\) None \(0\) \(-3\) \(-6\) \(16\) \(-\) \(+\) \(q-3q^{3}-6q^{5}+2^{4}q^{7}+9q^{9}+12q^{11}+\cdots\)
192.4.a.d \(1\) \(11.328\) \(\Q\) None \(0\) \(-3\) \(-2\) \(12\) \(-\) \(+\) \(q-3q^{3}-2q^{5}+12q^{7}+9q^{9}-60q^{11}+\cdots\)
192.4.a.e \(1\) \(11.328\) \(\Q\) None \(0\) \(-3\) \(14\) \(-36\) \(-\) \(+\) \(q-3q^{3}+14q^{5}-6^{2}q^{7}+9q^{9}+6^{2}q^{11}+\cdots\)
192.4.a.f \(1\) \(11.328\) \(\Q\) None \(0\) \(-3\) \(18\) \(8\) \(+\) \(+\) \(q-3q^{3}+18q^{5}+8q^{7}+9q^{9}-6^{2}q^{11}+\cdots\)
192.4.a.g \(1\) \(11.328\) \(\Q\) None \(0\) \(3\) \(-14\) \(24\) \(-\) \(-\) \(q+3q^{3}-14q^{5}+24q^{7}+9q^{9}-28q^{11}+\cdots\)
192.4.a.h \(1\) \(11.328\) \(\Q\) None \(0\) \(3\) \(-10\) \(-4\) \(+\) \(-\) \(q+3q^{3}-10q^{5}-4q^{7}+9q^{9}-20q^{11}+\cdots\)
192.4.a.i \(1\) \(11.328\) \(\Q\) None \(0\) \(3\) \(-6\) \(-16\) \(+\) \(-\) \(q+3q^{3}-6q^{5}-2^{4}q^{7}+9q^{9}-12q^{11}+\cdots\)
192.4.a.j \(1\) \(11.328\) \(\Q\) None \(0\) \(3\) \(-2\) \(-12\) \(-\) \(-\) \(q+3q^{3}-2q^{5}-12q^{7}+9q^{9}+60q^{11}+\cdots\)
192.4.a.k \(1\) \(11.328\) \(\Q\) None \(0\) \(3\) \(14\) \(36\) \(-\) \(-\) \(q+3q^{3}+14q^{5}+6^{2}q^{7}+9q^{9}-6^{2}q^{11}+\cdots\)
192.4.a.l \(1\) \(11.328\) \(\Q\) None \(0\) \(3\) \(18\) \(-8\) \(-\) \(-\) \(q+3q^{3}+18q^{5}-8q^{7}+9q^{9}+6^{2}q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(192))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(192)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 2}\)