Defining parameters
| Level: | \( N \) | \(=\) | \( 192 = 2^{6} \cdot 3 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 192.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 12 \) | ||
| Sturm bound: | \(128\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(192))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 108 | 12 | 96 |
| Cusp forms | 84 | 12 | 72 |
| Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(28\) | \(3\) | \(25\) | \(22\) | \(3\) | \(19\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(26\) | \(2\) | \(24\) | \(20\) | \(2\) | \(18\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(26\) | \(3\) | \(23\) | \(20\) | \(3\) | \(17\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(28\) | \(4\) | \(24\) | \(22\) | \(4\) | \(18\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(56\) | \(7\) | \(49\) | \(44\) | \(7\) | \(37\) | \(12\) | \(0\) | \(12\) | ||||
| Minus space | \(-\) | \(52\) | \(5\) | \(47\) | \(40\) | \(5\) | \(35\) | \(12\) | \(0\) | \(12\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(192))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(192))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(192)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 2}\)