Defining parameters
| Level: | \( N \) | \(=\) | \( 192 = 2^{6} \cdot 3 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 192.i (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 48 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(192, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 144 | 36 | 108 |
| Cusp forms | 112 | 28 | 84 |
| Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(192, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 192.3.i.a | $8$ | $5.232$ | 8.0.629407744.1 | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q+(-\beta _{1}-\beta _{2}-\beta _{3}-\beta _{6}-\beta _{7})q^{3}+\cdots\) |
| 192.3.i.b | $20$ | $5.232$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(6\) | \(0\) | \(0\) | \(q+\beta _{4}q^{3}+(\beta _{8}-\beta _{9}-\beta _{10})q^{5}-\beta _{6}q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(192, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(192, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 3}\)