Properties

Label 192.3.h.a.161.1
Level $192$
Weight $3$
Character 192.161
Analytic conductor $5.232$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,3,Mod(161,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 192.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.23162107572\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 161.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 192.161
Dual form 192.3.h.a.161.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} -13.8564 q^{7} -9.00000 q^{9} +O(q^{10})\) \(q-3.00000i q^{3} -13.8564 q^{7} -9.00000 q^{9} +13.8564i q^{13} -26.0000i q^{19} +41.5692i q^{21} -25.0000 q^{25} +27.0000i q^{27} -41.5692 q^{31} -69.2820i q^{37} +41.5692 q^{39} -22.0000i q^{43} +143.000 q^{49} -78.0000 q^{57} -96.9948i q^{61} +124.708 q^{63} +122.000i q^{67} -46.0000 q^{73} +75.0000i q^{75} +69.2820 q^{79} +81.0000 q^{81} -192.000i q^{91} +124.708i q^{93} -2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 36 q^{9} - 100 q^{25} + 572 q^{49} - 312 q^{57} - 184 q^{73} + 324 q^{81} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.00000i − 1.00000i
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −13.8564 −1.97949 −0.989743 0.142857i \(-0.954371\pi\)
−0.989743 + 0.142857i \(0.954371\pi\)
\(8\) 0 0
\(9\) −9.00000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 13.8564i 1.06588i 0.846154 + 0.532939i \(0.178912\pi\)
−0.846154 + 0.532939i \(0.821088\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) − 26.0000i − 1.36842i −0.729285 0.684211i \(-0.760147\pi\)
0.729285 0.684211i \(-0.239853\pi\)
\(20\) 0 0
\(21\) 41.5692i 1.97949i
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −25.0000 −1.00000
\(26\) 0 0
\(27\) 27.0000i 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −41.5692 −1.34094 −0.670471 0.741935i \(-0.733908\pi\)
−0.670471 + 0.741935i \(0.733908\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 69.2820i − 1.87249i −0.351351 0.936244i \(-0.614278\pi\)
0.351351 0.936244i \(-0.385722\pi\)
\(38\) 0 0
\(39\) 41.5692 1.06588
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) − 22.0000i − 0.511628i −0.966726 0.255814i \(-0.917657\pi\)
0.966726 0.255814i \(-0.0823435\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 143.000 2.91837
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −78.0000 −1.36842
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) − 96.9948i − 1.59008i −0.606557 0.795040i \(-0.707450\pi\)
0.606557 0.795040i \(-0.292550\pi\)
\(62\) 0 0
\(63\) 124.708 1.97949
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 122.000i 1.82090i 0.413624 + 0.910448i \(0.364263\pi\)
−0.413624 + 0.910448i \(0.635737\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −46.0000 −0.630137 −0.315068 0.949069i \(-0.602027\pi\)
−0.315068 + 0.949069i \(0.602027\pi\)
\(74\) 0 0
\(75\) 75.0000i 1.00000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 69.2820 0.876988 0.438494 0.898734i \(-0.355512\pi\)
0.438494 + 0.898734i \(0.355512\pi\)
\(80\) 0 0
\(81\) 81.0000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) − 192.000i − 2.10989i
\(92\) 0 0
\(93\) 124.708i 1.34094i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.00000 −0.0206186 −0.0103093 0.999947i \(-0.503282\pi\)
−0.0103093 + 0.999947i \(0.503282\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −69.2820 −0.672641 −0.336321 0.941748i \(-0.609183\pi\)
−0.336321 + 0.941748i \(0.609183\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) − 41.5692i − 0.381369i −0.981651 0.190684i \(-0.938929\pi\)
0.981651 0.190684i \(-0.0610707\pi\)
\(110\) 0 0
\(111\) −207.846 −1.87249
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 124.708i − 1.06588i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −121.000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −207.846 −1.63658 −0.818292 0.574803i \(-0.805079\pi\)
−0.818292 + 0.574803i \(0.805079\pi\)
\(128\) 0 0
\(129\) −66.0000 −0.511628
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 360.267i 2.70877i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 22.0000i 0.158273i 0.996864 + 0.0791367i \(0.0252164\pi\)
−0.996864 + 0.0791367i \(0.974784\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 429.000i − 2.91837i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 96.9948 0.642350 0.321175 0.947020i \(-0.395922\pi\)
0.321175 + 0.947020i \(0.395922\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 290.985i 1.85340i 0.375796 + 0.926702i \(0.377369\pi\)
−0.375796 + 0.926702i \(0.622631\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 262.000i 1.60736i 0.595060 + 0.803681i \(0.297128\pi\)
−0.595060 + 0.803681i \(0.702872\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −23.0000 −0.136095
\(170\) 0 0
\(171\) 234.000i 1.36842i
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 346.410 1.97949
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) − 180.133i − 0.995212i −0.867403 0.497606i \(-0.834213\pi\)
0.867403 0.497606i \(-0.165787\pi\)
\(182\) 0 0
\(183\) −290.985 −1.59008
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) − 374.123i − 1.97949i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −382.000 −1.97927 −0.989637 0.143590i \(-0.954135\pi\)
−0.989637 + 0.143590i \(0.954135\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 96.9948 0.487411 0.243706 0.969849i \(-0.421637\pi\)
0.243706 + 0.969849i \(0.421637\pi\)
\(200\) 0 0
\(201\) 366.000 1.82090
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 166.000i − 0.786730i −0.919382 0.393365i \(-0.871311\pi\)
0.919382 0.393365i \(-0.128689\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 576.000 2.65438
\(218\) 0 0
\(219\) 138.000i 0.630137i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 290.985 1.30486 0.652432 0.757848i \(-0.273749\pi\)
0.652432 + 0.757848i \(0.273749\pi\)
\(224\) 0 0
\(225\) 225.000 1.00000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) − 457.261i − 1.99677i −0.0567686 0.998387i \(-0.518080\pi\)
0.0567686 0.998387i \(-0.481920\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 207.846i − 0.876988i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −286.000 −1.18672 −0.593361 0.804936i \(-0.702199\pi\)
−0.593361 + 0.804936i \(0.702199\pi\)
\(242\) 0 0
\(243\) − 243.000i − 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 360.267 1.45857
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 960.000i 3.70656i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −484.974 −1.78957 −0.894786 0.446494i \(-0.852672\pi\)
−0.894786 + 0.446494i \(0.852672\pi\)
\(272\) 0 0
\(273\) −576.000 −2.10989
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 540.400i 1.95090i 0.220217 + 0.975451i \(0.429324\pi\)
−0.220217 + 0.975451i \(0.570676\pi\)
\(278\) 0 0
\(279\) 374.123 1.34094
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 458.000i − 1.61837i −0.587551 0.809187i \(-0.699908\pi\)
0.587551 0.809187i \(-0.300092\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) 6.00000i 0.0206186i
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 304.841i 1.01276i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 358.000i − 1.16612i −0.812428 0.583062i \(-0.801855\pi\)
0.812428 0.583062i \(-0.198145\pi\)
\(308\) 0 0
\(309\) 207.846i 0.672641i
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 142.000 0.453674 0.226837 0.973933i \(-0.427162\pi\)
0.226837 + 0.973933i \(0.427162\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) − 346.410i − 1.06588i
\(326\) 0 0
\(327\) −124.708 −0.381369
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 362.000i − 1.09366i −0.837245 0.546828i \(-0.815835\pi\)
0.837245 0.546828i \(-0.184165\pi\)
\(332\) 0 0
\(333\) 623.538i 1.87249i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −482.000 −1.43027 −0.715134 0.698988i \(-0.753634\pi\)
−0.715134 + 0.698988i \(0.753634\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1302.50 −3.79738
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) − 484.974i − 1.38961i −0.719198 0.694805i \(-0.755490\pi\)
0.719198 0.694805i \(-0.244510\pi\)
\(350\) 0 0
\(351\) −374.123 −1.06588
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −315.000 −0.872576
\(362\) 0 0
\(363\) 363.000i 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −152.420 −0.415315 −0.207657 0.978202i \(-0.566584\pi\)
−0.207657 + 0.978202i \(0.566584\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 263.272i 0.705822i 0.935657 + 0.352911i \(0.114808\pi\)
−0.935657 + 0.352911i \(0.885192\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 694.000i − 1.83113i −0.402165 0.915567i \(-0.631742\pi\)
0.402165 0.915567i \(-0.368258\pi\)
\(380\) 0 0
\(381\) 623.538i 1.63658i
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 198.000i 0.511628i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 706.677i − 1.78004i −0.455919 0.890021i \(-0.650689\pi\)
0.455919 0.890021i \(-0.349311\pi\)
\(398\) 0 0
\(399\) 1080.80 2.70877
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) − 576.000i − 1.42928i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 626.000 1.53056 0.765281 0.643696i \(-0.222600\pi\)
0.765281 + 0.643696i \(0.222600\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 66.0000 0.158273
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 762.102i 1.81022i 0.425178 + 0.905110i \(0.360211\pi\)
−0.425178 + 0.905110i \(0.639789\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1344.00i 3.14754i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 862.000 1.99076 0.995381 0.0960028i \(-0.0306058\pi\)
0.995381 + 0.0960028i \(0.0306058\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 872.954 1.98850 0.994252 0.107062i \(-0.0341442\pi\)
0.994252 + 0.107062i \(0.0341442\pi\)
\(440\) 0 0
\(441\) −1287.00 −2.91837
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 290.985i − 0.642350i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −814.000 −1.78118 −0.890591 0.454805i \(-0.849709\pi\)
−0.890591 + 0.454805i \(0.849709\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −762.102 −1.64601 −0.823005 0.568035i \(-0.807704\pi\)
−0.823005 + 0.568035i \(0.807704\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) − 1690.48i − 3.60444i
\(470\) 0 0
\(471\) 872.954 1.85340
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 650.000i 1.36842i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 960.000 1.99584
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 152.420 0.312978 0.156489 0.987680i \(-0.449982\pi\)
0.156489 + 0.987680i \(0.449982\pi\)
\(488\) 0 0
\(489\) 786.000 1.60736
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 26.0000i 0.0521042i 0.999661 + 0.0260521i \(0.00829358\pi\)
−0.999661 + 0.0260521i \(0.991706\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 69.0000i 0.136095i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 637.395 1.24735
\(512\) 0 0
\(513\) 702.000 1.36842
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) − 982.000i − 1.87763i −0.344423 0.938815i \(-0.611925\pi\)
0.344423 0.938815i \(-0.388075\pi\)
\(524\) 0 0
\(525\) − 1039.23i − 1.97949i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 529.000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) − 318.697i − 0.589089i −0.955638 0.294545i \(-0.904832\pi\)
0.955638 0.294545i \(-0.0951680\pi\)
\(542\) 0 0
\(543\) −540.400 −0.995212
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 506.000i − 0.925046i −0.886607 0.462523i \(-0.846944\pi\)
0.886607 0.462523i \(-0.153056\pi\)
\(548\) 0 0
\(549\) 872.954i 1.59008i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −960.000 −1.73599
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 304.841 0.545333
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1122.37 −1.97949
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 886.000i 1.55166i 0.630940 + 0.775832i \(0.282670\pi\)
−0.630940 + 0.775832i \(0.717330\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −962.000 −1.66724 −0.833622 0.552335i \(-0.813737\pi\)
−0.833622 + 0.552335i \(0.813737\pi\)
\(578\) 0 0
\(579\) 1146.00i 1.97927i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 1080.80i 1.83497i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 290.985i − 0.487411i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −526.000 −0.875208 −0.437604 0.899168i \(-0.644173\pi\)
−0.437604 + 0.899168i \(0.644173\pi\)
\(602\) 0 0
\(603\) − 1098.00i − 1.82090i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 900.666 1.48380 0.741900 0.670511i \(-0.233925\pi\)
0.741900 + 0.670511i \(0.233925\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 484.974i 0.791149i 0.918434 + 0.395574i \(0.129454\pi\)
−0.918434 + 0.395574i \(0.870546\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 214.000i 0.345719i 0.984947 + 0.172859i \(0.0553006\pi\)
−0.984947 + 0.172859i \(0.944699\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1066.94 −1.69088 −0.845438 0.534073i \(-0.820661\pi\)
−0.845438 + 0.534073i \(0.820661\pi\)
\(632\) 0 0
\(633\) −498.000 −0.786730
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1981.47i 3.11062i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) − 314.000i − 0.488336i −0.969733 0.244168i \(-0.921485\pi\)
0.969733 0.244168i \(-0.0785148\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) − 1728.00i − 2.65438i
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 414.000 0.630137
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 1316.36i 1.99147i 0.0922844 + 0.995733i \(0.470583\pi\)
−0.0922844 + 0.995733i \(0.529417\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) − 872.954i − 1.30486i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1154.00 −1.71471 −0.857355 0.514725i \(-0.827894\pi\)
−0.857355 + 0.514725i \(0.827894\pi\)
\(674\) 0 0
\(675\) − 675.000i − 1.00000i
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 27.7128 0.0408142
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −1371.78 −1.99677
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1318.00i 1.90738i 0.300790 + 0.953690i \(0.402750\pi\)
−0.300790 + 0.953690i \(0.597250\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) −1801.33 −2.56235
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 1066.94i − 1.50486i −0.658674 0.752428i \(-0.728882\pi\)
0.658674 0.752428i \(-0.271118\pi\)
\(710\) 0 0
\(711\) −623.538 −0.876988
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 960.000 1.33148
\(722\) 0 0
\(723\) 858.000i 1.18672i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1371.78 1.88691 0.943455 0.331499i \(-0.107554\pi\)
0.943455 + 0.331499i \(0.107554\pi\)
\(728\) 0 0
\(729\) −729.000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 1039.23i − 1.41778i −0.705321 0.708888i \(-0.749197\pi\)
0.705321 0.708888i \(-0.250803\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 1222.00i − 1.65359i −0.562506 0.826793i \(-0.690163\pi\)
0.562506 0.826793i \(-0.309837\pi\)
\(740\) 0 0
\(741\) − 1080.80i − 1.45857i
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 900.666 1.19929 0.599645 0.800266i \(-0.295309\pi\)
0.599645 + 0.800266i \(0.295309\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1260.93i 1.66570i 0.553501 + 0.832849i \(0.313292\pi\)
−0.553501 + 0.832849i \(0.686708\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 576.000i 0.754915i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −1534.00 −1.99480 −0.997399 0.0720749i \(-0.977038\pi\)
−0.997399 + 0.0720749i \(0.977038\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 1039.23 1.34094
\(776\) 0 0
\(777\) 2880.00 3.70656
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 1562.00i − 1.98475i −0.123246 0.992376i \(-0.539331\pi\)
0.123246 0.992376i \(-0.460669\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1344.00 1.69483
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 1514.00i 1.86683i 0.358797 + 0.933416i \(0.383187\pi\)
−0.358797 + 0.933416i \(0.616813\pi\)
\(812\) 0 0
\(813\) 1454.92i 1.78957i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −572.000 −0.700122
\(818\) 0 0
\(819\) 1728.00i 2.10989i
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 1260.93 1.53212 0.766059 0.642770i \(-0.222215\pi\)
0.766059 + 0.642770i \(0.222215\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) − 1593.49i − 1.92218i −0.276236 0.961090i \(-0.589087\pi\)
0.276236 0.961090i \(-0.410913\pi\)
\(830\) 0 0
\(831\) 1621.20 1.95090
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 1122.37i − 1.34094i
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −841.000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1676.63 1.97949
\(848\) 0 0
\(849\) −1374.00 −1.61837
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 401.836i − 0.471085i −0.971864 0.235543i \(-0.924313\pi\)
0.971864 0.235543i \(-0.0756867\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 1418.00i 1.65076i 0.564580 + 0.825378i \(0.309038\pi\)
−0.564580 + 0.825378i \(0.690962\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 867.000i − 1.00000i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −1690.48 −1.94085
\(872\) 0 0
\(873\) 18.0000 0.0206186
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1648.91i − 1.88017i −0.340935 0.940087i \(-0.610744\pi\)
0.340935 0.940087i \(-0.389256\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 1702.00i 1.92752i 0.266771 + 0.963760i \(0.414043\pi\)
−0.266771 + 0.963760i \(0.585957\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 2880.00 3.23960
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 914.523 1.01276
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 214.000i − 0.235943i −0.993017 0.117971i \(-0.962361\pi\)
0.993017 0.117971i \(-0.0376391\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1621.20 −1.76409 −0.882045 0.471164i \(-0.843834\pi\)
−0.882045 + 0.471164i \(0.843834\pi\)
\(920\) 0 0
\(921\) −1074.00 −1.16612
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1732.05i 1.87249i
\(926\) 0 0
\(927\) 623.538 0.672641
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) − 3718.00i − 3.99356i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1198.00 1.27855 0.639274 0.768979i \(-0.279235\pi\)
0.639274 + 0.768979i \(0.279235\pi\)
\(938\) 0 0
\(939\) − 426.000i − 0.453674i
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) − 637.395i − 0.671649i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 767.000 0.798127
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1177.79 −1.21799 −0.608994 0.793175i \(-0.708427\pi\)
−0.608994 + 0.793175i \(0.708427\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) − 304.841i − 0.313300i
\(974\) 0 0
\(975\) −1039.23 −1.06588
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 374.123i 0.381369i
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1981.47 −1.99946 −0.999731 0.0232089i \(-0.992612\pi\)
−0.999731 + 0.0232089i \(0.992612\pi\)
\(992\) 0 0
\(993\) −1086.00 −1.09366
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 623.538i − 0.625415i −0.949850 0.312707i \(-0.898764\pi\)
0.949850 0.312707i \(-0.101236\pi\)
\(998\) 0 0
\(999\) 1870.61 1.87249
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.3.h.a.161.1 4
3.2 odd 2 CM 192.3.h.a.161.1 4
4.3 odd 2 inner 192.3.h.a.161.4 yes 4
8.3 odd 2 inner 192.3.h.a.161.2 yes 4
8.5 even 2 inner 192.3.h.a.161.3 yes 4
12.11 even 2 inner 192.3.h.a.161.4 yes 4
16.3 odd 4 768.3.e.a.257.1 2
16.5 even 4 768.3.e.a.257.2 2
16.11 odd 4 768.3.e.f.257.1 2
16.13 even 4 768.3.e.f.257.2 2
24.5 odd 2 inner 192.3.h.a.161.3 yes 4
24.11 even 2 inner 192.3.h.a.161.2 yes 4
48.5 odd 4 768.3.e.a.257.2 2
48.11 even 4 768.3.e.f.257.1 2
48.29 odd 4 768.3.e.f.257.2 2
48.35 even 4 768.3.e.a.257.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.3.h.a.161.1 4 1.1 even 1 trivial
192.3.h.a.161.1 4 3.2 odd 2 CM
192.3.h.a.161.2 yes 4 8.3 odd 2 inner
192.3.h.a.161.2 yes 4 24.11 even 2 inner
192.3.h.a.161.3 yes 4 8.5 even 2 inner
192.3.h.a.161.3 yes 4 24.5 odd 2 inner
192.3.h.a.161.4 yes 4 4.3 odd 2 inner
192.3.h.a.161.4 yes 4 12.11 even 2 inner
768.3.e.a.257.1 2 16.3 odd 4
768.3.e.a.257.1 2 48.35 even 4
768.3.e.a.257.2 2 16.5 even 4
768.3.e.a.257.2 2 48.5 odd 4
768.3.e.f.257.1 2 16.11 odd 4
768.3.e.f.257.1 2 48.11 even 4
768.3.e.f.257.2 2 16.13 even 4
768.3.e.f.257.2 2 48.29 odd 4