# Properties

 Label 192.3.e.a Level $192$ Weight $3$ Character orbit 192.e Self dual yes Analytic conductor $5.232$ Analytic rank $0$ Dimension $1$ CM discriminant -3 Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [192,3,Mod(65,192)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(192, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 1]))

N = Newforms(chi, 3, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("192.65");

S:= CuspForms(chi, 3);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$192 = 2^{6} \cdot 3$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 192.e (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$5.23162107572$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 12) Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 3 q^{3} - 2 q^{7} + 9 q^{9}+O(q^{10})$$ q - 3 * q^3 - 2 * q^7 + 9 * q^9 $$q - 3 q^{3} - 2 q^{7} + 9 q^{9} + 22 q^{13} + 26 q^{19} + 6 q^{21} + 25 q^{25} - 27 q^{27} + 46 q^{31} - 26 q^{37} - 66 q^{39} - 22 q^{43} - 45 q^{49} - 78 q^{57} - 74 q^{61} - 18 q^{63} + 122 q^{67} - 46 q^{73} - 75 q^{75} + 142 q^{79} + 81 q^{81} - 44 q^{91} - 138 q^{93} + 2 q^{97}+O(q^{100})$$ q - 3 * q^3 - 2 * q^7 + 9 * q^9 + 22 * q^13 + 26 * q^19 + 6 * q^21 + 25 * q^25 - 27 * q^27 + 46 * q^31 - 26 * q^37 - 66 * q^39 - 22 * q^43 - 45 * q^49 - 78 * q^57 - 74 * q^61 - 18 * q^63 + 122 * q^67 - 46 * q^73 - 75 * q^75 + 142 * q^79 + 81 * q^81 - 44 * q^91 - 138 * q^93 + 2 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/192\mathbb{Z}\right)^\times$$.

 $$n$$ $$65$$ $$127$$ $$133$$ $$\chi(n)$$ $$1$$ $$0$$ $$0$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
65.1
 0
0 −3.00000 0 0 0 −2.00000 0 9.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.3.e.a 1
3.b odd 2 1 CM 192.3.e.a 1
4.b odd 2 1 192.3.e.b 1
8.b even 2 1 48.3.e.a 1
8.d odd 2 1 12.3.c.a 1
12.b even 2 1 192.3.e.b 1
16.e even 4 2 768.3.h.b 2
16.f odd 4 2 768.3.h.a 2
24.f even 2 1 12.3.c.a 1
24.h odd 2 1 48.3.e.a 1
40.e odd 2 1 300.3.g.b 1
40.f even 2 1 1200.3.l.b 1
40.i odd 4 2 1200.3.c.c 2
40.k even 4 2 300.3.b.a 2
48.i odd 4 2 768.3.h.b 2
48.k even 4 2 768.3.h.a 2
56.e even 2 1 588.3.c.c 1
56.k odd 6 2 588.3.p.c 2
56.m even 6 2 588.3.p.b 2
72.j odd 6 2 1296.3.q.b 2
72.l even 6 2 324.3.g.b 2
72.n even 6 2 1296.3.q.b 2
72.p odd 6 2 324.3.g.b 2
88.g even 2 1 1452.3.e.b 1
120.i odd 2 1 1200.3.l.b 1
120.m even 2 1 300.3.g.b 1
120.q odd 4 2 300.3.b.a 2
120.w even 4 2 1200.3.c.c 2
168.e odd 2 1 588.3.c.c 1
168.v even 6 2 588.3.p.c 2
168.be odd 6 2 588.3.p.b 2
264.p odd 2 1 1452.3.e.b 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.3.c.a 1 8.d odd 2 1
12.3.c.a 1 24.f even 2 1
48.3.e.a 1 8.b even 2 1
48.3.e.a 1 24.h odd 2 1
192.3.e.a 1 1.a even 1 1 trivial
192.3.e.a 1 3.b odd 2 1 CM
192.3.e.b 1 4.b odd 2 1
192.3.e.b 1 12.b even 2 1
300.3.b.a 2 40.k even 4 2
300.3.b.a 2 120.q odd 4 2
300.3.g.b 1 40.e odd 2 1
300.3.g.b 1 120.m even 2 1
324.3.g.b 2 72.l even 6 2
324.3.g.b 2 72.p odd 6 2
588.3.c.c 1 56.e even 2 1
588.3.c.c 1 168.e odd 2 1
588.3.p.b 2 56.m even 6 2
588.3.p.b 2 168.be odd 6 2
588.3.p.c 2 56.k odd 6 2
588.3.p.c 2 168.v even 6 2
768.3.h.a 2 16.f odd 4 2
768.3.h.a 2 48.k even 4 2
768.3.h.b 2 16.e even 4 2
768.3.h.b 2 48.i odd 4 2
1200.3.c.c 2 40.i odd 4 2
1200.3.c.c 2 120.w even 4 2
1200.3.l.b 1 40.f even 2 1
1200.3.l.b 1 120.i odd 2 1
1296.3.q.b 2 72.j odd 6 2
1296.3.q.b 2 72.n even 6 2
1452.3.e.b 1 88.g even 2 1
1452.3.e.b 1 264.p odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(192, [\chi])$$:

 $$T_{5}$$ T5 $$T_{7} + 2$$ T7 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 3$$
$5$ $$T$$
$7$ $$T + 2$$
$11$ $$T$$
$13$ $$T - 22$$
$17$ $$T$$
$19$ $$T - 26$$
$23$ $$T$$
$29$ $$T$$
$31$ $$T - 46$$
$37$ $$T + 26$$
$41$ $$T$$
$43$ $$T + 22$$
$47$ $$T$$
$53$ $$T$$
$59$ $$T$$
$61$ $$T + 74$$
$67$ $$T - 122$$
$71$ $$T$$
$73$ $$T + 46$$
$79$ $$T - 142$$
$83$ $$T$$
$89$ $$T$$
$97$ $$T - 2$$