Properties

Label 192.3.b
Level $192$
Weight $3$
Character orbit 192.b
Rep. character $\chi_{192}(31,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $2$
Sturm bound $96$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 192.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(192, [\chi])\).

Total New Old
Modular forms 76 8 68
Cusp forms 52 8 44
Eisenstein series 24 0 24

Trace form

\( 8 q + 24 q^{9} + 48 q^{17} + 104 q^{25} - 240 q^{41} - 24 q^{49} + 96 q^{57} - 384 q^{65} - 304 q^{73} + 72 q^{81} + 240 q^{89} + 112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(192, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
192.3.b.a 192.b 8.d $4$ $5.232$ \(\Q(\zeta_{12})\) None 192.3.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_1 q^{3}-\beta_{2} q^{5}+\beta_{3} q^{7}+3 q^{9}+\cdots\)
192.3.b.b 192.b 8.d $4$ $5.232$ \(\Q(\zeta_{12})\) None 192.3.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_1 q^{3}-\beta_{2} q^{5}+5\beta_{3} q^{7}+3 q^{9}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(192, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(192, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)