Properties

Label 192.2.s.a.179.20
Level $192$
Weight $2$
Character 192.179
Analytic conductor $1.533$
Analytic rank $0$
Dimension $240$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 192.s (of order \(16\), degree \(8\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.53312771881\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 179.20
Character \(\chi\) \(=\) 192.179
Dual form 192.2.s.a.59.20

$q$-expansion

\(f(q)\) \(=\) \(q+(0.596586 - 1.28222i) q^{2} +(0.791381 - 1.54069i) q^{3} +(-1.28817 - 1.52991i) q^{4} +(0.236051 + 1.18671i) q^{5} +(-1.50337 - 1.93388i) q^{6} +(1.67303 - 0.692992i) q^{7} +(-2.73018 + 0.738993i) q^{8} +(-1.74743 - 2.43854i) q^{9} +O(q^{10})\) \(q+(0.596586 - 1.28222i) q^{2} +(0.791381 - 1.54069i) q^{3} +(-1.28817 - 1.52991i) q^{4} +(0.236051 + 1.18671i) q^{5} +(-1.50337 - 1.93388i) q^{6} +(1.67303 - 0.692992i) q^{7} +(-2.73018 + 0.738993i) q^{8} +(-1.74743 - 2.43854i) q^{9} +(1.66245 + 0.405306i) q^{10} +(0.195719 - 0.292915i) q^{11} +(-3.37654 + 0.773926i) q^{12} +(1.51912 + 0.302171i) q^{13} +(0.109540 - 2.55862i) q^{14} +(2.01516 + 0.575458i) q^{15} +(-0.681239 + 3.94156i) q^{16} +(-5.35769 + 5.35769i) q^{17} +(-4.16924 + 0.785792i) q^{18} +(0.449975 + 0.0895056i) q^{19} +(1.51148 - 1.88982i) q^{20} +(0.256320 - 3.12604i) q^{21} +(-0.258817 - 0.425704i) q^{22} +(5.61589 + 2.32618i) q^{23} +(-1.02206 + 4.79118i) q^{24} +(3.26684 - 1.35317i) q^{25} +(1.29373 - 1.76757i) q^{26} +(-5.13991 + 0.762435i) q^{27} +(-3.21536 - 1.66689i) q^{28} +(-2.38167 + 1.59138i) q^{29} +(1.94008 - 2.24056i) q^{30} +7.41430 q^{31} +(4.64753 + 3.22498i) q^{32} +(-0.296402 - 0.533350i) q^{33} +(3.67341 + 10.0661i) q^{34} +(1.21730 + 1.82182i) q^{35} +(-1.47975 + 5.81467i) q^{36} +(-1.66041 - 8.34743i) q^{37} +(0.383215 - 0.523569i) q^{38} +(1.66775 - 2.10135i) q^{39} +(-1.52143 - 3.06549i) q^{40} +(1.93381 - 4.66864i) q^{41} +(-3.85534 - 2.19361i) q^{42} +(-1.78480 + 2.67114i) q^{43} +(-0.700253 + 0.0778912i) q^{44} +(2.48136 - 2.64932i) q^{45} +(6.33304 - 5.81304i) q^{46} +(0.866687 + 0.866687i) q^{47} +(5.53359 + 4.16885i) q^{48} +(-2.63096 + 2.63096i) q^{49} +(0.213893 - 4.99608i) q^{50} +(4.01455 + 12.4945i) q^{51} +(-1.49459 - 2.71336i) q^{52} +(0.141316 + 0.0944244i) q^{53} +(-2.08879 + 7.04535i) q^{54} +(0.393805 + 0.163119i) q^{55} +(-4.05556 + 3.12835i) q^{56} +(0.494002 - 0.622438i) q^{57} +(0.619627 + 4.00322i) q^{58} +(-8.97405 + 1.78505i) q^{59} +(-1.71546 - 3.82429i) q^{60} +(-11.0615 + 7.39103i) q^{61} +(4.42327 - 9.50675i) q^{62} +(-4.61340 - 2.86879i) q^{63} +(6.90778 - 4.03517i) q^{64} +1.87408i q^{65} +(-0.860700 + 0.0618625i) q^{66} +(-2.80422 - 4.19682i) q^{67} +(15.0984 + 1.29516i) q^{68} +(8.02822 - 6.81144i) q^{69} +(3.06220 - 0.473973i) q^{70} +(2.24207 + 5.41285i) q^{71} +(6.57287 + 5.36632i) q^{72} +(-6.08575 + 14.6923i) q^{73} +(-11.6938 - 2.85096i) q^{74} +(0.500503 - 6.10404i) q^{75} +(-0.442709 - 0.803719i) q^{76} +(0.124457 - 0.625687i) q^{77} +(-1.69944 - 3.39206i) q^{78} +(5.00420 + 5.00420i) q^{79} +(-4.83830 + 0.121978i) q^{80} +(-2.89295 + 8.52237i) q^{81} +(-4.83253 - 5.26481i) q^{82} +(1.64358 - 8.26285i) q^{83} +(-5.11273 + 3.63472i) q^{84} +(-7.62272 - 5.09334i) q^{85} +(2.36020 + 3.88206i) q^{86} +(0.567013 + 4.92880i) q^{87} +(-0.317888 + 0.944346i) q^{88} +(-4.01147 - 9.68454i) q^{89} +(-1.91666 - 4.76219i) q^{90} +(2.75093 - 0.547194i) q^{91} +(-3.67538 - 11.5883i) q^{92} +(5.86753 - 11.4231i) q^{93} +(1.62834 - 0.594228i) q^{94} +0.555118i q^{95} +(8.64665 - 4.60820i) q^{96} +0.511477i q^{97} +(1.80387 + 4.94305i) q^{98} +(-1.05629 + 0.0345795i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 8q^{3} - 16q^{4} - 8q^{6} - 16q^{7} - 8q^{9} + O(q^{10}) \) \( 240q - 8q^{3} - 16q^{4} - 8q^{6} - 16q^{7} - 8q^{9} - 16q^{10} - 8q^{12} - 16q^{13} - 8q^{15} - 16q^{16} - 8q^{18} - 16q^{19} - 8q^{21} - 16q^{22} - 48q^{24} - 16q^{25} - 8q^{27} - 16q^{28} - 88q^{30} - 32q^{31} - 16q^{34} - 88q^{36} - 16q^{37} - 8q^{39} - 16q^{40} - 48q^{42} - 16q^{43} - 8q^{45} - 16q^{46} - 8q^{48} - 16q^{49} - 8q^{51} + 32q^{52} - 8q^{54} - 80q^{55} - 8q^{57} + 128q^{58} - 8q^{60} - 16q^{61} + 80q^{64} - 24q^{66} - 144q^{67} - 8q^{69} + 80q^{70} - 8q^{72} - 16q^{73} - 8q^{75} + 96q^{76} + 16q^{78} - 48q^{79} - 8q^{81} + 64q^{82} + 104q^{84} - 16q^{85} - 8q^{87} + 64q^{88} + 136q^{90} - 16q^{91} - 32q^{93} + 80q^{94} + 128q^{96} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.596586 1.28222i 0.421850 0.906666i
\(3\) 0.791381 1.54069i 0.456904 0.889516i
\(4\) −1.28817 1.52991i −0.644085 0.764954i
\(5\) 0.236051 + 1.18671i 0.105565 + 0.530713i 0.996989 + 0.0775422i \(0.0247072\pi\)
−0.891424 + 0.453171i \(0.850293\pi\)
\(6\) −1.50337 1.93388i −0.613749 0.789502i
\(7\) 1.67303 0.692992i 0.632346 0.261926i −0.0434036 0.999058i \(-0.513820\pi\)
0.675749 + 0.737131i \(0.263820\pi\)
\(8\) −2.73018 + 0.738993i −0.965265 + 0.261273i
\(9\) −1.74743 2.43854i −0.582478 0.812847i
\(10\) 1.66245 + 0.405306i 0.525712 + 0.128169i
\(11\) 0.195719 0.292915i 0.0590116 0.0883172i −0.800790 0.598945i \(-0.795587\pi\)
0.859802 + 0.510628i \(0.170587\pi\)
\(12\) −3.37654 + 0.773926i −0.974724 + 0.223413i
\(13\) 1.51912 + 0.302171i 0.421327 + 0.0838072i 0.401201 0.915990i \(-0.368593\pi\)
0.0201268 + 0.999797i \(0.493593\pi\)
\(14\) 0.109540 2.55862i 0.0292758 0.683820i
\(15\) 2.01516 + 0.575458i 0.520311 + 0.148583i
\(16\) −0.681239 + 3.94156i −0.170310 + 0.985391i
\(17\) −5.35769 + 5.35769i −1.29943 + 1.29943i −0.370664 + 0.928767i \(0.620870\pi\)
−0.928767 + 0.370664i \(0.879130\pi\)
\(18\) −4.16924 + 0.785792i −0.982698 + 0.185213i
\(19\) 0.449975 + 0.0895056i 0.103231 + 0.0205340i 0.246436 0.969159i \(-0.420741\pi\)
−0.143204 + 0.989693i \(0.545741\pi\)
\(20\) 1.51148 1.88982i 0.337978 0.422577i
\(21\) 0.256320 3.12604i 0.0559336 0.682157i
\(22\) −0.258817 0.425704i −0.0551801 0.0907604i
\(23\) 5.61589 + 2.32618i 1.17099 + 0.485042i 0.881521 0.472144i \(-0.156520\pi\)
0.289473 + 0.957186i \(0.406520\pi\)
\(24\) −1.02206 + 4.79118i −0.208626 + 0.977995i
\(25\) 3.26684 1.35317i 0.653367 0.270634i
\(26\) 1.29373 1.76757i 0.253722 0.346649i
\(27\) −5.13991 + 0.762435i −0.989176 + 0.146731i
\(28\) −3.21536 1.66689i −0.607646 0.315013i
\(29\) −2.38167 + 1.59138i −0.442265 + 0.295512i −0.756694 0.653769i \(-0.773187\pi\)
0.314429 + 0.949281i \(0.398187\pi\)
\(30\) 1.94008 2.24056i 0.354208 0.409068i
\(31\) 7.41430 1.33165 0.665823 0.746109i \(-0.268080\pi\)
0.665823 + 0.746109i \(0.268080\pi\)
\(32\) 4.64753 + 3.22498i 0.821574 + 0.570101i
\(33\) −0.296402 0.533350i −0.0515969 0.0928443i
\(34\) 3.67341 + 10.0661i 0.629984 + 1.72631i
\(35\) 1.21730 + 1.82182i 0.205761 + 0.307944i
\(36\) −1.47975 + 5.81467i −0.246625 + 0.969111i
\(37\) −1.66041 8.34743i −0.272969 1.37231i −0.837292 0.546755i \(-0.815863\pi\)
0.564323 0.825554i \(-0.309137\pi\)
\(38\) 0.383215 0.523569i 0.0621657 0.0849341i
\(39\) 1.66775 2.10135i 0.267054 0.336486i
\(40\) −1.52143 3.06549i −0.240560 0.484697i
\(41\) 1.93381 4.66864i 0.302011 0.729118i −0.697906 0.716190i \(-0.745885\pi\)
0.999916 0.0129287i \(-0.00411546\pi\)
\(42\) −3.85534 2.19361i −0.594893 0.338481i
\(43\) −1.78480 + 2.67114i −0.272179 + 0.407345i −0.942228 0.334972i \(-0.891273\pi\)
0.670049 + 0.742317i \(0.266273\pi\)
\(44\) −0.700253 + 0.0778912i −0.105567 + 0.0117425i
\(45\) 2.48136 2.64932i 0.369899 0.394937i
\(46\) 6.33304 5.81304i 0.933755 0.857086i
\(47\) 0.866687 + 0.866687i 0.126419 + 0.126419i 0.767486 0.641066i \(-0.221508\pi\)
−0.641066 + 0.767486i \(0.721508\pi\)
\(48\) 5.53359 + 4.16885i 0.798706 + 0.601722i
\(49\) −2.63096 + 2.63096i −0.375851 + 0.375851i
\(50\) 0.213893 4.99608i 0.0302490 0.706552i
\(51\) 4.01455 + 12.4945i 0.562150 + 1.74958i
\(52\) −1.49459 2.71336i −0.207262 0.376275i
\(53\) 0.141316 + 0.0944244i 0.0194113 + 0.0129702i 0.565238 0.824928i \(-0.308784\pi\)
−0.545827 + 0.837898i \(0.683784\pi\)
\(54\) −2.08879 + 7.04535i −0.284249 + 0.958751i
\(55\) 0.393805 + 0.163119i 0.0531007 + 0.0219950i
\(56\) −4.05556 + 3.12835i −0.541947 + 0.418043i
\(57\) 0.494002 0.622438i 0.0654321 0.0824439i
\(58\) 0.619627 + 4.00322i 0.0813610 + 0.525649i
\(59\) −8.97405 + 1.78505i −1.16832 + 0.232394i −0.740872 0.671646i \(-0.765588\pi\)
−0.427449 + 0.904039i \(0.640588\pi\)
\(60\) −1.71546 3.82429i −0.221465 0.493714i
\(61\) −11.0615 + 7.39103i −1.41627 + 0.946324i −0.416974 + 0.908918i \(0.636909\pi\)
−0.999300 + 0.0374060i \(0.988091\pi\)
\(62\) 4.42327 9.50675i 0.561756 1.20736i
\(63\) −4.61340 2.86879i −0.581233 0.361434i
\(64\) 6.90778 4.03517i 0.863473 0.504396i
\(65\) 1.87408i 0.232451i
\(66\) −0.860700 + 0.0618625i −0.105945 + 0.00761475i
\(67\) −2.80422 4.19682i −0.342590 0.512723i 0.619667 0.784865i \(-0.287268\pi\)
−0.962257 + 0.272142i \(0.912268\pi\)
\(68\) 15.0984 + 1.29516i 1.83095 + 0.157061i
\(69\) 8.02822 6.81144i 0.966485 0.820001i
\(70\) 3.06220 0.473973i 0.366003 0.0566507i
\(71\) 2.24207 + 5.41285i 0.266085 + 0.642387i 0.999292 0.0376191i \(-0.0119773\pi\)
−0.733207 + 0.680006i \(0.761977\pi\)
\(72\) 6.57287 + 5.36632i 0.774620 + 0.632426i
\(73\) −6.08575 + 14.6923i −0.712283 + 1.71960i −0.0180664 + 0.999837i \(0.505751\pi\)
−0.694217 + 0.719766i \(0.744249\pi\)
\(74\) −11.6938 2.85096i −1.35938 0.331417i
\(75\) 0.500503 6.10404i 0.0577931 0.704834i
\(76\) −0.442709 0.803719i −0.0507822 0.0921929i
\(77\) 0.124457 0.625687i 0.0141832 0.0713037i
\(78\) −1.69944 3.39206i −0.192423 0.384075i
\(79\) 5.00420 + 5.00420i 0.563016 + 0.563016i 0.930163 0.367147i \(-0.119665\pi\)
−0.367147 + 0.930163i \(0.619665\pi\)
\(80\) −4.83830 + 0.121978i −0.540938 + 0.0136375i
\(81\) −2.89295 + 8.52237i −0.321439 + 0.946930i
\(82\) −4.83253 5.26481i −0.533663 0.581402i
\(83\) 1.64358 8.26285i 0.180407 0.906966i −0.779448 0.626467i \(-0.784500\pi\)
0.959854 0.280498i \(-0.0904998\pi\)
\(84\) −5.11273 + 3.63472i −0.557845 + 0.396580i
\(85\) −7.62272 5.09334i −0.826800 0.552450i
\(86\) 2.36020 + 3.88206i 0.254507 + 0.418614i
\(87\) 0.567013 + 4.92880i 0.0607902 + 0.528423i
\(88\) −0.317888 + 0.944346i −0.0338869 + 0.100668i
\(89\) −4.01147 9.68454i −0.425215 1.02656i −0.980785 0.195090i \(-0.937500\pi\)
0.555571 0.831469i \(-0.312500\pi\)
\(90\) −1.91666 4.76219i −0.202034 0.501979i
\(91\) 2.75093 0.547194i 0.288376 0.0573615i
\(92\) −3.67538 11.5883i −0.383185 1.20817i
\(93\) 5.86753 11.4231i 0.608435 1.18452i
\(94\) 1.62834 0.594228i 0.167950 0.0612900i
\(95\) 0.555118i 0.0569539i
\(96\) 8.64665 4.60820i 0.882495 0.470322i
\(97\) 0.511477i 0.0519326i 0.999663 + 0.0259663i \(0.00826626\pi\)
−0.999663 + 0.0259663i \(0.991734\pi\)
\(98\) 1.80387 + 4.94305i 0.182218 + 0.499324i
\(99\) −1.05629 + 0.0345795i −0.106161 + 0.00347537i
\(100\) −6.27846 3.25485i −0.627846 0.325485i
\(101\) −12.5246 + 2.49131i −1.24625 + 0.247894i −0.773781 0.633454i \(-0.781637\pi\)
−0.472468 + 0.881348i \(0.656637\pi\)
\(102\) 18.4157 + 2.30651i 1.82343 + 0.228379i
\(103\) −4.30678 10.3975i −0.424360 1.02450i −0.981046 0.193773i \(-0.937928\pi\)
0.556687 0.830723i \(-0.312072\pi\)
\(104\) −4.37077 + 0.297634i −0.428589 + 0.0291854i
\(105\) 3.77020 0.433727i 0.367934 0.0423274i
\(106\) 0.205380 0.124866i 0.0199483 0.0121280i
\(107\) −13.0428 8.71489i −1.26089 0.842500i −0.268221 0.963357i \(-0.586436\pi\)
−0.992670 + 0.120857i \(0.961436\pi\)
\(108\) 7.78753 + 6.88145i 0.749356 + 0.662168i
\(109\) 1.47832 7.43204i 0.141598 0.711860i −0.843123 0.537720i \(-0.819286\pi\)
0.984721 0.174140i \(-0.0557144\pi\)
\(110\) 0.444093 0.407629i 0.0423426 0.0388659i
\(111\) −14.1748 4.04783i −1.34541 0.384203i
\(112\) 1.59174 + 7.06644i 0.150405 + 0.667716i
\(113\) −0.382761 0.382761i −0.0360071 0.0360071i 0.688874 0.724881i \(-0.258105\pi\)
−0.724881 + 0.688874i \(0.758105\pi\)
\(114\) −0.503387 1.00476i −0.0471465 0.0941040i
\(115\) −1.43486 + 7.21354i −0.133802 + 0.672666i
\(116\) 5.50267 + 1.59377i 0.510910 + 0.147978i
\(117\) −1.91770 4.23245i −0.177291 0.391290i
\(118\) −3.06497 + 12.5716i −0.282153 + 1.15731i
\(119\) −5.25074 + 12.6764i −0.481335 + 1.16204i
\(120\) −5.92700 0.0819205i −0.541059 0.00747828i
\(121\) 4.16202 + 10.0480i 0.378366 + 0.913456i
\(122\) 2.87780 + 18.5926i 0.260544 + 1.68329i
\(123\) −5.66253 6.67407i −0.510573 0.601780i
\(124\) −9.55087 11.3432i −0.857693 1.01865i
\(125\) 5.73805 + 8.58759i 0.513226 + 0.768098i
\(126\) −6.43071 + 4.20390i −0.572893 + 0.374513i
\(127\) 20.3875i 1.80909i −0.426374 0.904547i \(-0.640209\pi\)
0.426374 0.904547i \(-0.359791\pi\)
\(128\) −1.05288 11.2646i −0.0930623 0.995660i
\(129\) 2.70293 + 4.86370i 0.237980 + 0.428225i
\(130\) 2.40298 + 1.11805i 0.210755 + 0.0980595i
\(131\) 11.2463 7.51452i 0.982592 0.656547i 0.0430832 0.999071i \(-0.486282\pi\)
0.939509 + 0.342524i \(0.111282\pi\)
\(132\) −0.434161 + 1.14051i −0.0377888 + 0.0992688i
\(133\) 0.814849 0.162083i 0.0706563 0.0140544i
\(134\) −7.05420 + 1.09186i −0.609390 + 0.0943227i
\(135\) −2.11807 5.91961i −0.182295 0.509479i
\(136\) 10.6682 18.5868i 0.914788 1.59380i
\(137\) 6.80483 + 2.81865i 0.581376 + 0.240814i 0.653935 0.756550i \(-0.273117\pi\)
−0.0725597 + 0.997364i \(0.523117\pi\)
\(138\) −3.94423 14.3576i −0.335755 1.22220i
\(139\) −6.22435 4.15897i −0.527942 0.352760i 0.262858 0.964835i \(-0.415335\pi\)
−0.790800 + 0.612075i \(0.790335\pi\)
\(140\) 1.21913 4.20917i 0.103035 0.355740i
\(141\) 2.02117 0.649414i 0.170213 0.0546905i
\(142\) 8.27804 + 0.354401i 0.694678 + 0.0297406i
\(143\) 0.385831 0.385831i 0.0322648 0.0322648i
\(144\) 10.8021 5.22639i 0.900173 0.435532i
\(145\) −2.45071 2.45071i −0.203520 0.203520i
\(146\) 15.2081 + 16.5685i 1.25863 + 1.37122i
\(147\) 1.97139 + 6.13557i 0.162598 + 0.506053i
\(148\) −10.6319 + 13.2932i −0.873938 + 1.09269i
\(149\) 2.17395 3.25354i 0.178097 0.266540i −0.731671 0.681658i \(-0.761259\pi\)
0.909768 + 0.415117i \(0.136259\pi\)
\(150\) −7.52813 4.28334i −0.614669 0.349734i
\(151\) −5.27703 + 12.7399i −0.429438 + 1.03676i 0.550028 + 0.835147i \(0.314617\pi\)
−0.979466 + 0.201610i \(0.935383\pi\)
\(152\) −1.29466 + 0.0881617i −0.105011 + 0.00715086i
\(153\) 22.4271 + 3.70273i 1.81313 + 0.299348i
\(154\) −0.728019 0.532858i −0.0586654 0.0429389i
\(155\) 1.75015 + 8.79862i 0.140576 + 0.706722i
\(156\) −5.36322 + 0.155391i −0.429402 + 0.0124412i
\(157\) 8.90728 + 13.3307i 0.710878 + 1.06390i 0.994476 + 0.104961i \(0.0334717\pi\)
−0.283598 + 0.958943i \(0.591528\pi\)
\(158\) 9.40191 3.43104i 0.747976 0.272959i
\(159\) 0.257313 0.142998i 0.0204063 0.0113405i
\(160\) −2.73006 + 6.27653i −0.215830 + 0.496203i
\(161\) 11.0076 0.867519
\(162\) 9.20165 + 8.79373i 0.722950 + 0.690901i
\(163\) 14.0405 9.38160i 1.09974 0.734823i 0.133137 0.991098i \(-0.457495\pi\)
0.966604 + 0.256274i \(0.0824951\pi\)
\(164\) −9.63366 + 3.05544i −0.752263 + 0.238590i
\(165\) 0.562966 0.477641i 0.0438268 0.0371843i
\(166\) −9.61424 7.03694i −0.746210 0.546172i
\(167\) 2.92551 1.21179i 0.226383 0.0937709i −0.266609 0.963805i \(-0.585903\pi\)
0.492992 + 0.870034i \(0.335903\pi\)
\(168\) 1.61032 + 8.72406i 0.124239 + 0.673076i
\(169\) −9.79402 4.05682i −0.753386 0.312063i
\(170\) −11.0784 + 6.73537i −0.849673 + 0.516580i
\(171\) −0.568039 1.25369i −0.0434390 0.0958719i
\(172\) 6.38572 0.710302i 0.486906 0.0541600i
\(173\) 22.7182 + 4.51893i 1.72723 + 0.343568i 0.956085 0.293089i \(-0.0946834\pi\)
0.771147 + 0.636657i \(0.219683\pi\)
\(174\) 6.65807 + 2.21342i 0.504747 + 0.167799i
\(175\) 4.52778 4.52778i 0.342268 0.342268i
\(176\) 1.02121 + 0.970986i 0.0769767 + 0.0731908i
\(177\) −4.35168 + 15.2388i −0.327093 + 1.14542i
\(178\) −14.8109 0.634085i −1.11012 0.0475267i
\(179\) −18.5016 3.68020i −1.38288 0.275071i −0.553076 0.833131i \(-0.686546\pi\)
−0.829801 + 0.558060i \(0.811546\pi\)
\(180\) −7.24962 0.383477i −0.540355 0.0285827i
\(181\) −0.577414 + 0.864161i −0.0429189 + 0.0642326i −0.852309 0.523039i \(-0.824798\pi\)
0.809390 + 0.587272i \(0.199798\pi\)
\(182\) 0.939545 3.85374i 0.0696437 0.285659i
\(183\) 2.63344 + 22.8914i 0.194670 + 1.69218i
\(184\) −17.0514 2.20079i −1.25705 0.162244i
\(185\) 9.51404 3.94085i 0.699486 0.289737i
\(186\) −11.1464 14.3383i −0.817296 1.05134i
\(187\) 0.520743 + 2.61795i 0.0380805 + 0.191444i
\(188\) 0.209512 2.44239i 0.0152802 0.178130i
\(189\) −8.07087 + 4.83749i −0.587069 + 0.351876i
\(190\) 0.711783 + 0.331176i 0.0516381 + 0.0240260i
\(191\) 16.8412 1.21859 0.609293 0.792945i \(-0.291453\pi\)
0.609293 + 0.792945i \(0.291453\pi\)
\(192\) −0.750247 13.8361i −0.0541444 0.998533i
\(193\) −11.0212 −0.793325 −0.396662 0.917965i \(-0.629832\pi\)
−0.396662 + 0.917965i \(0.629832\pi\)
\(194\) 0.655825 + 0.305140i 0.0470855 + 0.0219078i
\(195\) 2.88737 + 1.48311i 0.206769 + 0.106208i
\(196\) 7.41424 + 0.636004i 0.529588 + 0.0454289i
\(197\) 0.621690 + 3.12545i 0.0442936 + 0.222679i 0.996592 0.0824897i \(-0.0262872\pi\)
−0.952298 + 0.305169i \(0.901287\pi\)
\(198\) −0.585831 + 1.37503i −0.0416332 + 0.0977189i
\(199\) −5.19611 + 2.15230i −0.368342 + 0.152572i −0.559174 0.829050i \(-0.688882\pi\)
0.190832 + 0.981623i \(0.438882\pi\)
\(200\) −7.91908 + 6.10856i −0.559963 + 0.431941i
\(201\) −8.68519 + 0.999151i −0.612606 + 0.0704747i
\(202\) −4.27763 + 17.5456i −0.300973 + 1.23450i
\(203\) −2.88179 + 4.31291i −0.202262 + 0.302707i
\(204\) 13.9440 22.2369i 0.976276 1.55690i
\(205\) 5.99680 + 1.19284i 0.418834 + 0.0833114i
\(206\) −15.9012 0.680765i −1.10789 0.0474312i
\(207\) −4.14092 17.7594i −0.287814 1.23437i
\(208\) −2.22591 + 5.78185i −0.154339 + 0.400899i
\(209\) 0.114286 0.114286i 0.00790536 0.00790536i
\(210\) 1.69312 5.09298i 0.116836 0.351449i
\(211\) −1.77557 0.353183i −0.122235 0.0243141i 0.133594 0.991036i \(-0.457348\pi\)
−0.255829 + 0.966722i \(0.582348\pi\)
\(212\) −0.0375784 0.337835i −0.00258090 0.0232026i
\(213\) 10.1138 + 0.829287i 0.692989 + 0.0568218i
\(214\) −18.9555 + 11.5245i −1.29577 + 0.787797i
\(215\) −3.59117 1.48751i −0.244916 0.101447i
\(216\) 13.4695 5.87994i 0.916481 0.400079i
\(217\) 12.4043 5.13805i 0.842061 0.348793i
\(218\) −8.64755 6.32939i −0.585686 0.428680i
\(219\) 17.8201 + 21.0034i 1.20417 + 1.41928i
\(220\) −0.257730 0.812611i −0.0173761 0.0547862i
\(221\) −9.75790 + 6.52002i −0.656388 + 0.438584i
\(222\) −13.6467 + 15.7603i −0.915906 + 1.05776i
\(223\) 11.7629 0.787703 0.393852 0.919174i \(-0.371142\pi\)
0.393852 + 0.919174i \(0.371142\pi\)
\(224\) 10.0103 + 2.17479i 0.668844 + 0.145309i
\(225\) −9.00833 5.60174i −0.600556 0.373449i
\(226\) −0.719134 + 0.262433i −0.0478361 + 0.0174568i
\(227\) −1.26179 1.88841i −0.0837482 0.125338i 0.787230 0.616659i \(-0.211514\pi\)
−0.870979 + 0.491321i \(0.836514\pi\)
\(228\) −1.58863 + 0.0460280i −0.105210 + 0.00304828i
\(229\) 4.61236 + 23.1879i 0.304793 + 1.53230i 0.764732 + 0.644348i \(0.222871\pi\)
−0.459939 + 0.887951i \(0.652129\pi\)
\(230\) 8.39331 + 6.14330i 0.553439 + 0.405077i
\(231\) −0.865496 0.686906i −0.0569454 0.0451951i
\(232\) 5.32638 6.10480i 0.349694 0.400800i
\(233\) 7.38685 17.8334i 0.483929 1.16831i −0.473800 0.880633i \(-0.657118\pi\)
0.957728 0.287674i \(-0.0928821\pi\)
\(234\) −6.57100 0.0661129i −0.429560 0.00432193i
\(235\) −0.823923 + 1.23309i −0.0537468 + 0.0804378i
\(236\) 14.2911 + 11.4300i 0.930268 + 0.744031i
\(237\) 11.6701 3.74968i 0.758056 0.243568i
\(238\) 13.1214 + 14.2952i 0.850535 + 0.926618i
\(239\) −16.8325 16.8325i −1.08880 1.08880i −0.995652 0.0931492i \(-0.970307\pi\)
−0.0931492 0.995652i \(-0.529693\pi\)
\(240\) −3.64101 + 7.55084i −0.235026 + 0.487404i
\(241\) 7.55413 7.55413i 0.486605 0.486605i −0.420628 0.907233i \(-0.638190\pi\)
0.907233 + 0.420628i \(0.138190\pi\)
\(242\) 15.3668 + 0.657884i 0.987813 + 0.0422904i
\(243\) 10.8409 + 11.2016i 0.695443 + 0.718581i
\(244\) 25.5566 + 7.40212i 1.63610 + 0.473872i
\(245\) −3.74322 2.50114i −0.239146 0.159792i
\(246\) −11.9358 + 3.27894i −0.760999 + 0.209057i
\(247\) 0.656519 + 0.271939i 0.0417733 + 0.0173031i
\(248\) −20.2424 + 5.47911i −1.28539 + 0.347924i
\(249\) −11.4298 9.07131i −0.724332 0.574871i
\(250\) 14.4344 2.23419i 0.912912 0.141303i
\(251\) 0.0778052 0.0154764i 0.00491102 0.000976863i −0.192634 0.981271i \(-0.561703\pi\)
0.197545 + 0.980294i \(0.436703\pi\)
\(252\) 1.55385 + 10.7536i 0.0978830 + 0.677411i
\(253\) 1.78051 1.18970i 0.111940 0.0747958i
\(254\) −26.1412 12.1629i −1.64024 0.763167i
\(255\) −13.8797 + 7.71345i −0.869181 + 0.483035i
\(256\) −15.0718 5.37029i −0.941989 0.335643i
\(257\) 12.0673i 0.752736i −0.926470 0.376368i \(-0.877173\pi\)
0.926470 0.376368i \(-0.122827\pi\)
\(258\) 7.84886 0.564134i 0.488649 0.0351215i
\(259\) −8.56261 12.8149i −0.532055 0.796276i
\(260\) 2.86717 2.41413i 0.177814 0.149718i
\(261\) 8.04246 + 3.02697i 0.497816 + 0.187365i
\(262\) −2.92589 18.9033i −0.180762 1.16785i
\(263\) 6.59833 + 15.9298i 0.406871 + 0.982272i 0.985956 + 0.167006i \(0.0534098\pi\)
−0.579085 + 0.815267i \(0.696590\pi\)
\(264\) 1.20337 + 1.23710i 0.0740624 + 0.0761384i
\(265\) −0.0786965 + 0.189990i −0.00483429 + 0.0116710i
\(266\) 0.278301 1.14151i 0.0170637 0.0699905i
\(267\) −18.0954 1.48374i −1.10742 0.0908034i
\(268\) −2.80843 + 9.69642i −0.171552 + 0.592303i
\(269\) 1.04745 5.26591i 0.0638644 0.321068i −0.935626 0.352993i \(-0.885164\pi\)
0.999490 + 0.0319252i \(0.0101638\pi\)
\(270\) −8.85385 0.815728i −0.538828 0.0496436i
\(271\) 10.9804 + 10.9804i 0.667010 + 0.667010i 0.957023 0.290013i \(-0.0936596\pi\)
−0.290013 + 0.957023i \(0.593660\pi\)
\(272\) −17.4678 24.7675i −1.05914 1.50175i
\(273\) 1.33398 4.67136i 0.0807361 0.282724i
\(274\) 7.67380 7.04371i 0.463591 0.425526i
\(275\) 0.243020 1.22175i 0.0146547 0.0736741i
\(276\) −20.7626 3.50816i −1.24976 0.211166i
\(277\) −16.5708 11.0722i −0.995642 0.665267i −0.0528340 0.998603i \(-0.516825\pi\)
−0.942808 + 0.333337i \(0.891825\pi\)
\(278\) −9.04607 + 5.49978i −0.542547 + 0.329855i
\(279\) −12.9560 18.0801i −0.775655 1.08242i
\(280\) −4.66977 4.07432i −0.279072 0.243487i
\(281\) 0.813714 + 1.96448i 0.0485421 + 0.117191i 0.946291 0.323318i \(-0.104798\pi\)
−0.897748 + 0.440508i \(0.854798\pi\)
\(282\) 0.373113 2.97902i 0.0222186 0.177398i
\(283\) 27.0094 5.37250i 1.60554 0.319362i 0.690688 0.723153i \(-0.257308\pi\)
0.914851 + 0.403791i \(0.132308\pi\)
\(284\) 5.39299 10.4028i 0.320015 0.617294i
\(285\) 0.855263 + 0.439310i 0.0506614 + 0.0260225i
\(286\) −0.264538 0.724902i −0.0156425 0.0428644i
\(287\) 9.15088i 0.540160i
\(288\) −0.257003 16.9686i −0.0151440 0.999885i
\(289\) 40.4097i 2.37704i
\(290\) −4.60440 + 1.68028i −0.270380 + 0.0986697i
\(291\) 0.788026 + 0.404773i 0.0461949 + 0.0237282i
\(292\) 30.3173 9.61553i 1.77419 0.562706i
\(293\) −21.8303 + 4.34232i −1.27534 + 0.253681i −0.785899 0.618354i \(-0.787800\pi\)
−0.489442 + 0.872036i \(0.662800\pi\)
\(294\) 9.04324 + 1.13264i 0.527413 + 0.0660569i
\(295\) −4.23667 10.2282i −0.246669 0.595511i
\(296\) 10.7019 + 21.5630i 0.622035 + 1.25332i
\(297\) −0.782652 + 1.65478i −0.0454141 + 0.0960201i
\(298\) −2.87480 4.72849i −0.166533 0.273914i
\(299\) 7.82830 + 5.23070i 0.452722 + 0.302499i
\(300\) −9.98336 + 7.09732i −0.576390 + 0.409764i
\(301\) −1.13494 + 5.70574i −0.0654170 + 0.328873i
\(302\) 13.1871 + 14.3667i 0.758832 + 0.826713i
\(303\) −6.07344 + 21.2681i −0.348910 + 1.22182i
\(304\) −0.659333 + 1.71263i −0.0378153 + 0.0982261i
\(305\) −11.3821 11.3821i −0.651736 0.651736i
\(306\) 18.1274 26.5475i 1.03628 1.51762i
\(307\) −1.30264 + 6.54884i −0.0743459 + 0.373762i −0.999989 0.00463515i \(-0.998525\pi\)
0.925643 + 0.378397i \(0.123525\pi\)
\(308\) −1.11757 + 0.615584i −0.0636792 + 0.0350761i
\(309\) −19.4276 1.59297i −1.10520 0.0906209i
\(310\) 12.3259 + 3.00506i 0.700063 + 0.170676i
\(311\) 8.66081 20.9090i 0.491110 1.18564i −0.463047 0.886334i \(-0.653244\pi\)
0.954156 0.299309i \(-0.0967563\pi\)
\(312\) −3.00038 + 6.96953i −0.169863 + 0.394572i
\(313\) −0.187664 0.453060i −0.0106074 0.0256085i 0.918487 0.395451i \(-0.129412\pi\)
−0.929094 + 0.369842i \(0.879412\pi\)
\(314\) 22.4068 3.46817i 1.26449 0.195720i
\(315\) 2.31543 6.15195i 0.130460 0.346623i
\(316\) 1.20971 14.1022i 0.0680514 0.793311i
\(317\) −2.48905 3.72513i −0.139799 0.209224i 0.754963 0.655767i \(-0.227655\pi\)
−0.894762 + 0.446544i \(0.852655\pi\)
\(318\) −0.0298454 0.415243i −0.00167365 0.0232857i
\(319\) 1.00909i 0.0564983i
\(320\) 6.41917 + 7.24503i 0.358842 + 0.405009i
\(321\) −23.7487 + 13.1980i −1.32552 + 0.736641i
\(322\) 6.56697 14.1141i 0.365963 0.786550i
\(323\) −2.89037 + 1.93128i −0.160825 + 0.107460i
\(324\) 16.7651 6.55231i 0.931392 0.364017i
\(325\) 5.37160 1.06848i 0.297963 0.0592685i
\(326\) −3.65286 23.6000i −0.202313 1.30708i
\(327\) −10.2805 8.15920i −0.568514 0.451205i
\(328\) −1.82957 + 14.1753i −0.101021 + 0.782700i
\(329\) 2.05060 + 0.849386i 0.113053 + 0.0468282i
\(330\) −0.276582 1.00680i −0.0152254 0.0554225i
\(331\) −4.72899 3.15981i −0.259929 0.173679i 0.418777 0.908089i \(-0.362459\pi\)
−0.678706 + 0.734410i \(0.737459\pi\)
\(332\) −14.7586 + 8.12942i −0.809984 + 0.446160i
\(333\) −17.4541 + 18.6356i −0.956478 + 1.02122i
\(334\) 0.191545 4.47408i 0.0104809 0.244811i
\(335\) 4.31846 4.31846i 0.235943 0.235943i
\(336\) 12.1469 + 3.13988i 0.662665 + 0.171294i
\(337\) 16.5565 + 16.5565i 0.901889 + 0.901889i 0.995599 0.0937107i \(-0.0298729\pi\)
−0.0937107 + 0.995599i \(0.529873\pi\)
\(338\) −11.0447 + 10.1378i −0.600753 + 0.551426i
\(339\) −0.892625 + 0.286805i −0.0484807 + 0.0155771i
\(340\) 2.02701 + 18.2231i 0.109930 + 0.988288i
\(341\) 1.45112 2.17176i 0.0785827 0.117607i
\(342\) −1.94639 0.0195832i −0.105248 0.00105894i
\(343\) −7.42938 + 17.9361i −0.401149 + 0.968459i
\(344\) 2.89887 8.61164i 0.156296 0.464308i
\(345\) 9.97828 + 7.91933i 0.537213 + 0.426362i
\(346\) 19.3476 26.4338i 1.04013 1.42109i
\(347\) −4.52316 22.7394i −0.242816 1.22072i −0.889133 0.457649i \(-0.848692\pi\)
0.646317 0.763069i \(-0.276308\pi\)
\(348\) 6.81020 7.21661i 0.365065 0.386851i
\(349\) 12.7156 + 19.0302i 0.680649 + 1.01866i 0.997533 + 0.0701993i \(0.0223635\pi\)
−0.316884 + 0.948464i \(0.602636\pi\)
\(350\) −3.10439 8.50682i −0.165937 0.454709i
\(351\) −8.03852 0.394906i −0.429064 0.0210785i
\(352\) 1.85426 0.730139i 0.0988322 0.0389165i
\(353\) 21.2771 1.13247 0.566233 0.824245i \(-0.308400\pi\)
0.566233 + 0.824245i \(0.308400\pi\)
\(354\) 16.9434 + 14.6711i 0.900531 + 0.779760i
\(355\) −5.89423 + 3.93840i −0.312833 + 0.209029i
\(356\) −9.64900 + 18.6125i −0.511396 + 0.986461i
\(357\) 15.3750 + 18.1216i 0.813734 + 0.959098i
\(358\) −15.7566 + 21.5276i −0.832765 + 1.13777i
\(359\) 15.0547 6.23585i 0.794556 0.329116i 0.0517820 0.998658i \(-0.483510\pi\)
0.742774 + 0.669543i \(0.233510\pi\)
\(360\) −4.81673 + 9.06682i −0.253864 + 0.477863i
\(361\) −17.3592 7.19043i −0.913644 0.378444i
\(362\) 0.763566 + 1.25592i 0.0401322 + 0.0660096i
\(363\) 18.7746 + 1.53943i 0.985411 + 0.0807990i
\(364\) −4.38082 3.50379i −0.229618 0.183649i
\(365\) −18.8720 3.75388i −0.987808 0.196487i
\(366\) 30.9228 + 10.2800i 1.61636 + 0.537346i
\(367\) −17.9288 + 17.9288i −0.935877 + 0.935877i −0.998064 0.0621874i \(-0.980192\pi\)
0.0621874 + 0.998064i \(0.480192\pi\)
\(368\) −12.9945 + 20.5507i −0.677388 + 1.07128i
\(369\) −14.7639 + 3.44245i −0.768576 + 0.179207i
\(370\) 0.622922 14.5501i 0.0323842 0.756426i
\(371\) 0.301861 + 0.0600440i 0.0156719 + 0.00311733i
\(372\) −25.0347 + 5.73812i −1.29799 + 0.297508i
\(373\) 3.81912 5.71572i 0.197747 0.295949i −0.719323 0.694676i \(-0.755548\pi\)
0.917070 + 0.398727i \(0.130548\pi\)
\(374\) 3.66746 + 0.894128i 0.189640 + 0.0462343i
\(375\) 17.7718 2.04448i 0.917730 0.105576i
\(376\) −3.00669 1.72574i −0.155058 0.0889981i
\(377\) −4.09891 + 1.69782i −0.211105 + 0.0874424i
\(378\) 1.38775 + 13.2346i 0.0713784 + 0.680714i
\(379\) 4.14184 + 20.8224i 0.212752 + 1.06958i 0.928533 + 0.371251i \(0.121071\pi\)
−0.715781 + 0.698325i \(0.753929\pi\)
\(380\) 0.849280 0.715086i 0.0435671 0.0366831i
\(381\) −31.4107 16.1342i −1.60922 0.826582i
\(382\) 10.0472 21.5941i 0.514061 1.10485i
\(383\) 14.0621 0.718539 0.359270 0.933234i \(-0.383026\pi\)
0.359270 + 0.933234i \(0.383026\pi\)
\(384\) −18.1885 7.29244i −0.928176 0.372141i
\(385\) 0.771888 0.0393391
\(386\) −6.57511 + 14.1316i −0.334664 + 0.719280i
\(387\) 9.63249 0.315336i 0.489647 0.0160294i
\(388\) 0.782513 0.658869i 0.0397261 0.0334490i
\(389\) 1.56898 + 7.88779i 0.0795504 + 0.399927i 0.999960 + 0.00897073i \(0.00285551\pi\)
−0.920409 + 0.390956i \(0.872144\pi\)
\(390\) 3.62424 2.81744i 0.183520 0.142667i
\(391\) −42.5512 + 17.6253i −2.15191 + 0.891348i
\(392\) 5.23873 9.12724i 0.264596 0.460995i
\(393\) −2.67744 23.2738i −0.135059 1.17401i
\(394\) 4.37840 + 1.06746i 0.220581 + 0.0537777i
\(395\) −4.75728 + 7.11978i −0.239365 + 0.358235i
\(396\) 1.41359 + 1.57148i 0.0710354 + 0.0789701i
\(397\) 15.0464 + 2.99291i 0.755157 + 0.150210i 0.557633 0.830088i \(-0.311710\pi\)
0.197525 + 0.980298i \(0.436710\pi\)
\(398\) −0.340210 + 7.94658i −0.0170532 + 0.398326i
\(399\) 0.395136 1.38370i 0.0197815 0.0692715i
\(400\) 3.10810 + 13.7983i 0.155405 + 0.689914i
\(401\) −6.24050 + 6.24050i −0.311636 + 0.311636i −0.845543 0.533907i \(-0.820723\pi\)
0.533907 + 0.845543i \(0.320723\pi\)
\(402\) −3.90034 + 11.7324i −0.194531 + 0.585159i
\(403\) 11.2632 + 2.24039i 0.561059 + 0.111602i
\(404\) 19.9453 + 15.9523i 0.992317 + 0.793658i
\(405\) −10.7965 1.42138i −0.536481 0.0706289i
\(406\) 3.81085 + 6.26811i 0.189130 + 0.311081i
\(407\) −2.77006 1.14740i −0.137307 0.0568744i
\(408\) −20.1938 31.1455i −0.999742 1.54193i
\(409\) −16.7368 + 6.93262i −0.827583 + 0.342796i −0.755946 0.654634i \(-0.772823\pi\)
−0.0716377 + 0.997431i \(0.522823\pi\)
\(410\) 5.10709 6.97757i 0.252221 0.344598i
\(411\) 9.72787 8.25349i 0.479841 0.407114i
\(412\) −10.3593 + 19.9827i −0.510368 + 0.984477i
\(413\) −13.7768 + 9.20538i −0.677913 + 0.452967i
\(414\) −25.2419 5.28547i −1.24057 0.259766i
\(415\) 10.1936 0.500383
\(416\) 6.08564 + 6.30347i 0.298373 + 0.309053i
\(417\) −11.3335 + 6.29844i −0.555004 + 0.308436i
\(418\) −0.0783585 0.214722i −0.00383264 0.0105024i
\(419\) 19.6961 + 29.4773i 0.962219 + 1.44006i 0.896918 + 0.442196i \(0.145801\pi\)
0.0653003 + 0.997866i \(0.479199\pi\)
\(420\) −5.52022 5.20935i −0.269359 0.254190i
\(421\) −2.22772 11.1995i −0.108573 0.545832i −0.996336 0.0855306i \(-0.972741\pi\)
0.887763 0.460301i \(-0.152259\pi\)
\(422\) −1.51214 + 2.06597i −0.0736098 + 0.100570i
\(423\) 0.598973 3.62793i 0.0291231 0.176396i
\(424\) −0.455597 0.153364i −0.0221258 0.00744802i
\(425\) −10.2528 + 24.7526i −0.497336 + 1.20068i
\(426\) 7.09710 12.4734i 0.343856 0.604338i
\(427\) −13.3842 + 20.0309i −0.647708 + 0.969364i
\(428\) 3.46830 + 31.1805i 0.167646 + 1.50717i
\(429\) −0.289106 0.899785i −0.0139582 0.0434420i
\(430\) −4.04976 + 3.71724i −0.195297 + 0.179261i
\(431\) 5.45637 + 5.45637i 0.262824 + 0.262824i 0.826200 0.563376i \(-0.190498\pi\)
−0.563376 + 0.826200i \(0.690498\pi\)
\(432\) 0.496324 20.7787i 0.0238794 0.999715i
\(433\) 6.70357 6.70357i 0.322153 0.322153i −0.527439 0.849593i \(-0.676848\pi\)
0.849593 + 0.527439i \(0.176848\pi\)
\(434\) 0.812161 18.9704i 0.0389850 0.910607i
\(435\) −5.71521 + 1.83633i −0.274024 + 0.0880453i
\(436\) −13.2747 + 7.31202i −0.635741 + 0.350182i
\(437\) 2.31881 + 1.54938i 0.110924 + 0.0741168i
\(438\) 37.5622 10.3189i 1.79479 0.493055i
\(439\) −1.64770 0.682501i −0.0786406 0.0325740i 0.343016 0.939329i \(-0.388551\pi\)
−0.421657 + 0.906755i \(0.638551\pi\)
\(440\) −1.19570 0.154327i −0.0570029 0.00735723i
\(441\) 11.0131 + 1.81827i 0.524434 + 0.0865843i
\(442\) 2.53866 + 16.4015i 0.120752 + 0.780141i
\(443\) 24.1233 4.79843i 1.14613 0.227980i 0.414743 0.909938i \(-0.363871\pi\)
0.731391 + 0.681958i \(0.238871\pi\)
\(444\) 12.0667 + 26.9004i 0.572662 + 1.27664i
\(445\) 10.5458 7.04650i 0.499920 0.334036i
\(446\) 7.01760 15.0826i 0.332293 0.714184i
\(447\) −3.29227 5.92416i −0.155719 0.280203i
\(448\) 8.76059 11.5380i 0.413899 0.545119i
\(449\) 16.6611i 0.786288i −0.919477 0.393144i \(-0.871387\pi\)
0.919477 0.393144i \(-0.128613\pi\)
\(450\) −12.5569 + 8.20873i −0.591938 + 0.386963i
\(451\) −0.989028 1.48019i −0.0465715 0.0696992i
\(452\) −0.0925283 + 1.07865i −0.00435216 + 0.0507355i
\(453\) 15.4520 + 18.2123i 0.725999 + 0.855690i
\(454\) −3.17412 + 0.491297i −0.148969 + 0.0230577i
\(455\) 1.29872 + 3.13539i 0.0608850 + 0.146989i
\(456\) −0.888738 + 2.06443i −0.0416189 + 0.0966759i
\(457\) −1.88990 + 4.56262i −0.0884057 + 0.213430i −0.961898 0.273407i \(-0.911849\pi\)
0.873493 + 0.486837i \(0.161849\pi\)
\(458\) 32.4836 + 7.91953i 1.51786 + 0.370055i
\(459\) 23.4532 31.6229i 1.09470 1.47603i
\(460\) 12.8844 7.09705i 0.600738 0.330902i
\(461\) −2.63011 + 13.2224i −0.122496 + 0.615830i 0.869949 + 0.493142i \(0.164152\pi\)
−0.992445 + 0.122688i \(0.960848\pi\)
\(462\) −1.39711 + 0.699956i −0.0649993 + 0.0325649i
\(463\) −30.3105 30.3105i −1.40865 1.40865i −0.766995 0.641653i \(-0.778249\pi\)
−0.641653 0.766995i \(-0.721751\pi\)
\(464\) −4.65005 10.4716i −0.215873 0.486133i
\(465\) 14.9410 + 4.26662i 0.692870 + 0.197860i
\(466\) −18.4595 20.1107i −0.855118 0.931612i
\(467\) −0.567936 + 2.85521i −0.0262809 + 0.132123i −0.991698 0.128586i \(-0.958956\pi\)
0.965417 + 0.260709i \(0.0839563\pi\)
\(468\) −4.00494 + 8.38602i −0.185129 + 0.387644i
\(469\) −7.59991 5.07810i −0.350931 0.234485i
\(470\) 1.08955 + 1.79209i 0.0502571 + 0.0826631i
\(471\) 27.5875 3.17368i 1.27116 0.146236i
\(472\) 23.1816 11.5053i 1.06702 0.529572i
\(473\) 0.433096 + 1.04559i 0.0199138 + 0.0480761i
\(474\) 2.15433 17.2007i 0.0989517 0.790052i
\(475\) 1.59111 0.316492i 0.0730052 0.0145216i
\(476\) 26.1576 8.29621i 1.19893 0.380256i
\(477\) −0.0166828 0.509605i −0.000763853 0.0233332i
\(478\) −31.6249 + 11.5409i −1.44649 + 0.527868i
\(479\) 33.2241i 1.51805i 0.651063 + 0.759023i \(0.274323\pi\)
−0.651063 + 0.759023i \(0.725677\pi\)
\(480\) 7.50965 + 9.17329i 0.342767 + 0.418702i
\(481\) 13.1825i 0.601068i
\(482\) −5.17936 14.1927i −0.235913 0.646462i
\(483\) 8.71119 16.9592i 0.396373 0.771672i
\(484\) 10.0112 19.3111i 0.455052 0.877776i
\(485\) −0.606975 + 0.120735i −0.0275613 + 0.00548229i
\(486\) 20.8304 7.21767i 0.944886 0.327400i
\(487\) 1.13093 + 2.73032i 0.0512475 + 0.123722i 0.947430 0.319963i \(-0.103671\pi\)
−0.896182 + 0.443686i \(0.853671\pi\)
\(488\) 24.7379 28.3532i 1.11983 1.28349i
\(489\) −3.34268 29.0565i −0.151161 1.31398i
\(490\) −5.44017 + 3.30748i −0.245762 + 0.149417i
\(491\) −11.3505 7.58416i −0.512241 0.342268i 0.272435 0.962174i \(-0.412171\pi\)
−0.784676 + 0.619906i \(0.787171\pi\)
\(492\) −2.91642 + 17.2605i −0.131482 + 0.778162i
\(493\) 4.23413 21.2864i 0.190696 0.958691i
\(494\) 0.740356 0.679566i 0.0333102 0.0305751i
\(495\) −0.290375 1.24535i −0.0130514 0.0559743i
\(496\) −5.05091 + 29.2239i −0.226792 + 1.31219i
\(497\) 7.50211 + 7.50211i 0.336516 + 0.336516i
\(498\) −18.4502 + 9.24364i −0.826775 + 0.414218i
\(499\) 6.99769 35.1797i 0.313259 1.57486i −0.428086 0.903738i \(-0.640812\pi\)
0.741346 0.671124i \(-0.234188\pi\)
\(500\) 5.74665 19.8410i 0.256998 0.887315i
\(501\) 0.448209 5.46628i 0.0200245 0.244216i
\(502\) 0.0265734 0.108996i 0.00118603 0.00486474i
\(503\) 3.21744 7.76759i 0.143459 0.346340i −0.835776 0.549071i \(-0.814982\pi\)
0.979234 + 0.202731i \(0.0649817\pi\)
\(504\) 14.7154 + 4.42306i 0.655477 + 0.197019i
\(505\) −5.91292 14.2750i −0.263121 0.635231i
\(506\) −0.463227 2.99277i −0.0205929 0.133045i
\(507\) −14.0011 + 11.8790i −0.621810 + 0.527567i
\(508\) −31.1909 + 26.2625i −1.38387 + 1.16521i
\(509\) −6.20342 9.28407i −0.274962 0.411509i 0.668129 0.744046i \(-0.267096\pi\)
−0.943090 + 0.332536i \(0.892096\pi\)
\(510\) 1.60989 + 22.3986i 0.0712871 + 0.991825i
\(511\) 28.7980i 1.27395i
\(512\) −15.8775 + 16.1215i −0.701694 + 0.712478i
\(513\) −2.38107 0.116974i −0.105127 0.00516454i
\(514\) −15.4729 7.19918i −0.682480 0.317542i
\(515\) 11.3222 7.56524i 0.498915 0.333364i
\(516\) 3.95918 10.4005i 0.174293 0.457857i
\(517\) 0.423493 0.0842380i 0.0186252 0.00370478i
\(518\) −21.5398 + 3.33397i −0.946404 + 0.146486i
\(519\) 24.9410 31.4254i 1.09479 1.37942i
\(520\) −1.38493 5.11658i −0.0607333 0.224377i
\(521\) −23.1719 9.59813i −1.01518 0.420502i −0.187838 0.982200i \(-0.560148\pi\)
−0.827342 + 0.561698i \(0.810148\pi\)
\(522\) 8.67926 8.50635i 0.379881 0.372313i
\(523\) 2.25094 + 1.50403i 0.0984265 + 0.0657665i 0.603809 0.797129i \(-0.293649\pi\)
−0.505383 + 0.862895i \(0.668649\pi\)
\(524\) −25.9836 7.52580i −1.13510 0.328766i
\(525\) −3.39270 10.5591i −0.148069 0.460837i
\(526\) 24.3619 + 1.04299i 1.06223 + 0.0454764i
\(527\) −39.7235 + 39.7235i −1.73038 + 1.73038i
\(528\) 2.30415 0.804947i 0.100275 0.0350308i
\(529\) 9.86370 + 9.86370i 0.428856 + 0.428856i
\(530\) 0.196660 + 0.214252i 0.00854235 + 0.00930650i
\(531\) 20.0345 + 18.7643i 0.869421 + 0.814302i
\(532\) −1.29764 1.03785i −0.0562597 0.0449966i
\(533\) 4.34842 6.50786i 0.188351 0.281887i
\(534\) −12.6980 + 22.3171i −0.549495 + 0.965757i
\(535\) 7.26329 17.5351i 0.314019 0.758110i
\(536\) 10.7575 + 9.38577i 0.464651 + 0.405404i
\(537\) −20.3119 + 25.5928i −0.876522 + 1.10441i
\(538\) −6.12715 4.48463i −0.264160 0.193346i
\(539\) 0.255717 + 1.28558i 0.0110145 + 0.0553737i
\(540\) −6.32803 + 10.8659i −0.272315 + 0.467595i
\(541\) −10.1967 15.2604i −0.438389 0.656096i 0.544825 0.838550i \(-0.316596\pi\)
−0.983214 + 0.182454i \(0.941596\pi\)
\(542\) 20.6300 7.52849i 0.886133 0.323376i
\(543\) 0.874448 + 1.57350i 0.0375262 + 0.0675251i
\(544\) −42.1785 + 7.62157i −1.80839 + 0.326772i
\(545\) 9.16863 0.392741
\(546\) −5.19388 4.49732i −0.222277 0.192468i
\(547\) 9.39841 6.27982i 0.401847 0.268506i −0.338182 0.941081i \(-0.609812\pi\)
0.740029 + 0.672575i \(0.234812\pi\)
\(548\) −4.45349 14.0417i −0.190244 0.599830i
\(549\) 37.3525 + 14.0585i 1.59416 + 0.600001i
\(550\) −1.42156 1.04048i −0.0606157 0.0443663i
\(551\) −1.21413 + 0.502910i −0.0517237 + 0.0214247i
\(552\) −16.8849 + 24.5293i −0.718669 + 1.04403i
\(553\) 11.8400 + 4.90430i 0.503490 + 0.208552i
\(554\) −24.0829 + 14.6418i −1.02319 + 0.622071i
\(555\) 1.45762 17.7769i 0.0618725 0.754586i
\(556\) 1.65516 + 14.8801i 0.0701945 + 0.631059i
\(557\) 0.973075 + 0.193557i 0.0412305 + 0.00820126i 0.215662 0.976468i \(-0.430809\pi\)
−0.174432 + 0.984669i \(0.555809\pi\)
\(558\) −30.9119 + 5.82609i −1.30861 + 0.246638i
\(559\) −3.51846 + 3.51846i −0.148815 + 0.148815i
\(560\) −8.01009 + 3.55697i −0.338488 + 0.150310i
\(561\) 4.44555 + 1.26949i 0.187691 + 0.0535981i
\(562\) 3.00434 + 0.128622i 0.126730 + 0.00542560i
\(563\) −38.4068 7.63958i −1.61865 0.321970i −0.699126 0.714998i \(-0.746427\pi\)
−0.919526 + 0.393028i \(0.871427\pi\)
\(564\) −3.59716 2.25565i −0.151468 0.0949801i
\(565\) 0.363875 0.544578i 0.0153084 0.0229106i
\(566\) 9.22470 37.8371i 0.387743 1.59041i
\(567\) 1.06594 + 16.2630i 0.0447651 + 0.682981i
\(568\) −10.1213 13.1212i −0.424681 0.550552i
\(569\) 1.65125 0.683971i 0.0692241 0.0286736i −0.347803 0.937568i \(-0.613072\pi\)
0.417027 + 0.908894i \(0.363072\pi\)
\(570\) 1.07353 0.834548i 0.0449652 0.0349554i
\(571\) 4.40514 + 22.1461i 0.184349 + 0.926787i 0.956586 + 0.291451i \(0.0941382\pi\)
−0.772236 + 0.635336i \(0.780862\pi\)
\(572\) −1.08730 0.0932704i −0.0454624 0.00389983i
\(573\) 13.3278 25.9470i 0.556776 1.08395i
\(574\) −11.7334 5.45929i −0.489744 0.227866i
\(575\) 21.4939 0.896358
\(576\) −21.9108 9.79371i −0.912950 0.408071i
\(577\) 33.8945 1.41105 0.705524 0.708687i \(-0.250712\pi\)
0.705524 + 0.708687i \(0.250712\pi\)
\(578\) −51.8141 24.1079i −2.15518 1.00276i
\(579\) −8.72198 + 16.9802i −0.362473 + 0.705675i
\(580\) −0.592431 + 6.90628i −0.0245994 + 0.286768i
\(581\) −2.97632 14.9630i −0.123479 0.620769i
\(582\) 0.989133 0.768939i 0.0410009 0.0318736i
\(583\) 0.0553166 0.0229129i 0.00229098 0.000948955i
\(584\) 5.75770 44.6100i 0.238255 1.84597i
\(585\) 4.57002 3.27483i 0.188947 0.135398i
\(586\) −7.45587 + 30.5818i −0.307999 + 1.26332i
\(587\) −4.76150 + 7.12609i −0.196528 + 0.294125i −0.916625 0.399749i \(-0.869097\pi\)
0.720097 + 0.693874i \(0.244097\pi\)
\(588\) 6.84737 10.9197i 0.282381 0.450321i
\(589\) 3.33625 + 0.663621i 0.137468 + 0.0273440i
\(590\) −15.6424 0.669683i −0.643986 0.0275704i
\(591\) 5.30733 + 1.51559i 0.218314 + 0.0623430i
\(592\) 34.0331 0.858004i 1.39875 0.0352638i
\(593\) −8.20538 + 8.20538i −0.336954 + 0.336954i −0.855220 0.518265i \(-0.826578\pi\)
0.518265 + 0.855220i \(0.326578\pi\)
\(594\) 1.65487 + 1.99075i 0.0679002 + 0.0816815i
\(595\) −16.2827 3.23883i −0.667525 0.132779i
\(596\) −7.77803 + 0.865173i −0.318601 + 0.0354389i
\(597\) −0.796081 + 9.70886i −0.0325814 + 0.397357i
\(598\) 11.3772 6.91703i 0.465247 0.282858i
\(599\) −37.4991 15.5326i −1.53217 0.634646i −0.552187 0.833720i \(-0.686207\pi\)
−0.979984 + 0.199074i \(0.936207\pi\)
\(600\) 3.14438 + 17.0350i 0.128369 + 0.695452i
\(601\) 1.67208 0.692599i 0.0682056 0.0282517i −0.348320 0.937376i \(-0.613248\pi\)
0.416525 + 0.909124i \(0.363248\pi\)
\(602\) 6.63892 + 4.85921i 0.270582 + 0.198047i
\(603\) −5.33391 + 14.1719i −0.217214 + 0.577123i
\(604\) 26.2885 8.33775i 1.06967 0.339258i
\(605\) −10.9416 + 7.31097i −0.444841 + 0.297233i
\(606\) 23.6471 + 20.4757i 0.960596 + 0.831770i
\(607\) 15.2468 0.618849 0.309425 0.950924i \(-0.399864\pi\)
0.309425 + 0.950924i \(0.399864\pi\)
\(608\) 1.80262 + 1.86714i 0.0731058 + 0.0757225i
\(609\) 4.36425 + 7.85310i 0.176848 + 0.318224i
\(610\) −21.3847 + 7.80392i −0.865842 + 0.315972i
\(611\) 1.05471 + 1.57849i 0.0426690 + 0.0638587i
\(612\) −23.2251 39.0812i −0.938820 1.57977i
\(613\) −2.33457 11.7367i −0.0942925 0.474040i −0.998861 0.0477123i \(-0.984807\pi\)
0.904569 0.426328i \(-0.140193\pi\)
\(614\) 7.61990 + 5.57722i 0.307514 + 0.225078i
\(615\) 6.58354 8.29520i 0.265474 0.334495i
\(616\) 0.122588 + 1.80021i 0.00493922 + 0.0725326i
\(617\) −2.95975 + 7.14546i −0.119155 + 0.287666i −0.972192 0.234185i \(-0.924758\pi\)
0.853037 + 0.521850i \(0.174758\pi\)
\(618\) −13.6328 + 23.9601i −0.548390 + 0.963815i
\(619\) −11.0577 + 16.5490i −0.444447 + 0.665162i −0.984281 0.176610i \(-0.943487\pi\)
0.539834 + 0.841772i \(0.318487\pi\)
\(620\) 11.2066 14.0117i 0.450067 0.562723i
\(621\) −30.6388 7.67460i −1.22949 0.307971i
\(622\) −21.6431 23.5791i −0.867807 0.945436i
\(623\) −13.4226 13.4226i −0.537765 0.537765i
\(624\) 7.14647 + 8.00507i 0.286088 + 0.320459i
\(625\) 3.66513 3.66513i 0.146605 0.146605i
\(626\) −0.692879 0.0296636i −0.0276930 0.00118560i
\(627\) −0.0856356 0.266524i −0.00341996 0.0106439i
\(628\) 8.92064 30.7995i 0.355972 1.22903i
\(629\) 53.6189 + 35.8270i 2.13793 + 1.42852i
\(630\) −6.50679 6.63905i −0.259237 0.264506i
\(631\) 9.44515 + 3.91231i 0.376006 + 0.155747i 0.562679 0.826675i \(-0.309771\pi\)
−0.186674 + 0.982422i \(0.559771\pi\)
\(632\) −17.3604 9.96430i −0.690561 0.396359i
\(633\) −1.94930 + 2.45610i −0.0774776 + 0.0976211i
\(634\) −6.26136 + 0.969147i −0.248670 + 0.0384897i
\(635\) 24.1940 4.81249i 0.960110 0.190978i
\(636\) −0.550237 0.209460i −0.0218183 0.00830562i
\(637\) −4.79173 + 3.20173i −0.189855 + 0.126857i
\(638\) 1.29388 + 0.602010i 0.0512251 + 0.0238338i
\(639\) 9.28156 14.9260i 0.367173 0.590462i
\(640\) 13.1193 3.90849i 0.518586 0.154497i
\(641\) 8.18398i 0.323248i 0.986852 + 0.161624i \(0.0516731\pi\)
−0.986852 + 0.161624i \(0.948327\pi\)
\(642\) 2.75458 + 38.3248i 0.108715 + 1.51256i
\(643\) −14.4944 21.6924i −0.571604 0.855466i 0.427210 0.904152i \(-0.359497\pi\)
−0.998814 + 0.0486863i \(0.984497\pi\)
\(644\) −14.1796 16.8406i −0.558756 0.663612i
\(645\) −5.13377 + 4.35568i −0.202142 + 0.171505i
\(646\) 0.751973 + 4.85827i 0.0295860 + 0.191146i
\(647\) −3.69489 8.92026i −0.145261 0.350692i 0.834457 0.551074i \(-0.185782\pi\)
−0.979718 + 0.200382i \(0.935782\pi\)
\(648\) 1.60032 25.4055i 0.0628664 0.998022i
\(649\) −1.23353 + 2.97800i −0.0484202 + 0.116897i
\(650\) 1.83460 7.52500i 0.0719589 0.295155i
\(651\) 1.90043 23.1774i 0.0744839 0.908392i
\(652\) −32.4396 9.39567i −1.27043 0.367963i
\(653\) 6.19427 31.1407i 0.242401 1.21863i −0.647354 0.762190i \(-0.724124\pi\)
0.889754 0.456440i \(-0.150876\pi\)
\(654\) −16.5951 + 8.31421i −0.648920 + 0.325111i
\(655\) 11.5723 + 11.5723i 0.452166 + 0.452166i
\(656\) 17.0843 + 10.8027i 0.667031 + 0.421774i
\(657\) 46.4622 10.8335i 1.81266 0.422654i
\(658\) 2.31246 2.12258i 0.0901490 0.0827470i
\(659\) −5.78780 + 29.0972i −0.225461 + 1.13347i 0.687740 + 0.725957i \(0.258603\pi\)
−0.913201 + 0.407510i \(0.866397\pi\)
\(660\) −1.45594 0.246003i −0.0566725 0.00957567i
\(661\) −10.4672 6.99398i −0.407128 0.272034i 0.335099 0.942183i \(-0.391230\pi\)
−0.742227 + 0.670149i \(0.766230\pi\)
\(662\) −6.87282 + 4.17850i −0.267120 + 0.162402i
\(663\) 2.32310 + 20.1937i 0.0902217 + 0.784258i
\(664\) 1.61890 + 23.7737i 0.0628257 + 0.922598i
\(665\) 0.384692 + 0.928729i 0.0149177 + 0.0360146i
\(666\) 13.4820 + 33.4977i 0.522416 + 1.29801i
\(667\) −17.0771 + 3.39684i −0.661226 + 0.131526i
\(668\) −5.62248 2.91478i −0.217540 0.112776i
\(669\) 9.30895 18.1230i 0.359905 0.700675i
\(670\) −2.96088 8.11355i −0.114389 0.313454i
\(671\) 4.68663i 0.180926i
\(672\) 11.2727 13.7017i 0.434852 0.528555i
\(673\) 14.2382i 0.548843i 0.961609 + 0.274422i \(0.0884864\pi\)
−0.961609 + 0.274422i \(0.911514\pi\)
\(674\) 31.1064 11.3517i 1.19817 0.437249i
\(675\) −15.7595 + 9.44591i −0.606585 + 0.363573i
\(676\) 6.40980 + 20.2098i 0.246531 + 0.777301i
\(677\) 29.4523 5.85843i 1.13194 0.225158i 0.406642 0.913588i \(-0.366700\pi\)
0.725303 + 0.688430i \(0.241700\pi\)
\(678\) −0.164781 + 1.31564i −0.00632836 + 0.0505270i
\(679\) 0.354449 + 0.855716i 0.0136025 + 0.0328394i
\(680\) 24.5753 + 8.27260i 0.942421 + 0.317240i
\(681\) −3.90800 + 0.449580i −0.149755 + 0.0172279i
\(682\) −1.91895 3.15630i −0.0734803 0.120861i
\(683\) 15.3354 + 10.2468i 0.586795 + 0.392084i 0.813230 0.581943i \(-0.197707\pi\)
−0.226435 + 0.974026i \(0.572707\pi\)
\(684\) −1.18630 + 2.48401i −0.0453592 + 0.0949785i
\(685\) −1.73863 + 8.74071i −0.0664298 + 0.333965i
\(686\) 18.5657 + 20.2265i 0.708843 + 0.772252i
\(687\) 39.3754 + 11.2442i 1.50227 + 0.428995i
\(688\) −9.31258 8.85457i −0.355039 0.337577i
\(689\) 0.186143 + 0.186143i 0.00709150 + 0.00709150i
\(690\) 16.1072 8.06978i 0.613191 0.307211i
\(691\) −0.954311 + 4.79764i −0.0363037 + 0.182511i −0.994683 0.102989i \(-0.967159\pi\)
0.958379 + 0.285500i \(0.0921595\pi\)
\(692\) −22.3513 40.5779i −0.849670 1.54254i
\(693\) −1.74324 + 0.789854i −0.0662204 + 0.0300041i
\(694\) −31.8554 7.76636i −1.20921 0.294807i
\(695\) 3.46623 8.36823i 0.131482 0.317425i
\(696\) −5.19040 13.0375i −0.196741 0.494185i
\(697\) 14.6523 + 35.3739i 0.554997 + 1.33988i
\(698\) 31.9868 4.95099i 1.21072 0.187398i
\(699\) −21.6299 25.4939i −0.818119 0.964266i
\(700\) −12.7596 1.09454i −0.482269 0.0413697i
\(701\) 6.98329 + 10.4512i 0.263755 + 0.394738i 0.939583 0.342322i \(-0.111213\pi\)
−0.675827 + 0.737060i \(0.736213\pi\)
\(702\) −5.30202 + 10.0715i −0.200112 + 0.380126i
\(703\) 3.90475i 0.147271i
\(704\) 0.170027 2.81315i 0.00640812 0.106025i
\(705\) 1.24777 + 2.24525i 0.0469936 + 0.0845610i
\(706\) 12.6936 27.2819i 0.477731 1.02677i
\(707\) −19.2276 + 12.8475i −0.723130 + 0.483180i
\(708\) 28.9197 12.9725i 1.08687 0.487538i
\(709\) −5.46150 + 1.08636i −0.205111 + 0.0407991i −0.296576 0.955009i \(-0.595845\pi\)
0.0914654 + 0.995808i \(0.470845\pi\)
\(710\) 1.53347 + 9.90729i 0.0575502 + 0.371814i
\(711\) 3.45843 20.9474i 0.129701 0.785590i
\(712\) 18.1088 + 23.4761i 0.678657 + 0.879804i
\(713\) 41.6379 + 17.2470i 1.55935 + 0.645904i
\(714\) 32.4084 8.90307i 1.21285 0.333189i
\(715\) 0.548946 + 0.366794i 0.0205294 + 0.0137173i
\(716\) 18.2029 + 33.0465i 0.680273 + 1.23501i
\(717\) −39.2544 + 12.6127i −1.46598 + 0.471029i
\(718\) 0.985690 23.0236i 0.0367856 0.859234i
\(719\) 8.51084 8.51084i 0.317401 0.317401i −0.530367 0.847768i \(-0.677946\pi\)
0.847768 + 0.530367i \(0.177946\pi\)
\(720\) 8.75205 + 11.5852i 0.326170 + 0.431756i
\(721\) −14.4107 14.4107i −0.536684 0.536684i
\(722\) −19.5760 + 17.9686i −0.728543 + 0.668723i
\(723\) −5.66036 17.6168i −0.210511 0.655174i
\(724\) 2.06590 0.229796i 0.0767784 0.00854028i
\(725\) −5.62713 + 8.42159i −0.208986 + 0.312770i
\(726\) 13.1746 23.1547i 0.488953 0.859353i
\(727\) 13.3478 32.2243i 0.495041 1.19513i −0.457083 0.889424i \(-0.651106\pi\)
0.952124 0.305711i \(-0.0988941\pi\)
\(728\) −7.10617 + 3.52686i −0.263372 + 0.130714i
\(729\) 25.8374 7.83769i 0.956940 0.290285i
\(730\) −16.0721 + 21.9586i −0.594855 + 0.812723i
\(731\) −4.74874 23.8735i −0.175638 0.882994i
\(732\) 31.6294 33.5169i 1.16906 1.23882i
\(733\) 10.7811 + 16.1350i 0.398208 + 0.595961i 0.975345 0.220687i \(-0.0708299\pi\)
−0.577136 + 0.816648i \(0.695830\pi\)
\(734\) 12.2926 + 33.6848i 0.453727 + 1.24333i
\(735\) −6.81579 + 3.78778i −0.251404 + 0.139714i
\(736\) 18.5981 + 28.9221i 0.685536 + 1.06608i
\(737\) −1.77815 −0.0654990
\(738\) −4.39394 + 20.9842i −0.161743 + 0.772440i
\(739\) −16.0152 + 10.7010i −0.589130 + 0.393644i −0.814103 0.580721i \(-0.802771\pi\)
0.224973 + 0.974365i \(0.427771\pi\)
\(740\) −18.2848 9.47913i −0.672164 0.348460i
\(741\) 0.938530 0.796283i 0.0344778 0.0292522i
\(742\) 0.257076 0.351231i 0.00943755 0.0128941i
\(743\) −25.1918 + 10.4348i −0.924198 + 0.382815i −0.793474 0.608604i \(-0.791730\pi\)
−0.130723 + 0.991419i \(0.541730\pi\)
\(744\) −7.57783 + 35.5232i −0.277817 + 1.30234i
\(745\) 4.37417 + 1.81184i 0.160257 + 0.0663808i
\(746\) −5.05037 8.30687i −0.184907 0.304136i
\(747\) −23.0213 + 10.4308i −0.842307 + 0.381644i
\(748\) 3.33442 4.16905i 0.121919 0.152436i
\(749\) −27.8603 5.54175i −1.01799 0.202491i
\(750\) 7.98093 24.0070i 0.291422 0.876612i
\(751\) 16.9708 16.9708i 0.619274 0.619274i −0.326072 0.945345i \(-0.605725\pi\)
0.945345 + 0.326072i \(0.105725\pi\)
\(752\) −4.00652 + 2.82568i −0.146103 + 0.103042i
\(753\) 0.0377292 0.132121i 0.00137493 0.00481476i
\(754\) −0.268372 + 6.26860i −0.00977353 + 0.228289i
\(755\) −16.3642 3.25504i −0.595554 0.118463i
\(756\) 17.7976 + 6.11617i 0.647291 + 0.222443i
\(757\) −5.99152 + 8.96695i −0.217766 + 0.325909i −0.924228 0.381842i \(-0.875290\pi\)
0.706462 + 0.707751i \(0.250290\pi\)
\(758\) 29.1698 + 7.11163i 1.05950 + 0.258306i
\(759\) −0.423893 3.68472i −0.0153863 0.133747i
\(760\) −0.410228 1.51557i −0.0148805 0.0549756i
\(761\) −36.4626 + 15.1033i −1.32177 + 0.547494i −0.928295 0.371843i \(-0.878726\pi\)
−0.393471 + 0.919337i \(0.628726\pi\)
\(762\) −39.4268 + 30.6499i −1.42828 + 1.11033i
\(763\) −2.67706 13.4585i −0.0969160 0.487230i
\(764\) −21.6943 25.7655i −0.784872 0.932162i
\(765\) 0.899885 + 27.4886i 0.0325354 + 0.993851i
\(766\) 8.38925 18.0307i 0.303116 0.651475i
\(767\) −14.1720 −0.511722
\(768\) −20.2015 + 18.9710i −0.728958 + 0.684558i
\(769\) −3.39340 −0.122369 −0.0611845 0.998126i \(-0.519488\pi\)
−0.0611845 + 0.998126i \(0.519488\pi\)
\(770\) 0.460498 0.989729i 0.0165952 0.0356674i
\(771\) −18.5919 9.54981i −0.669571 0.343928i
\(772\) 14.1972 + 16.8615i 0.510968 + 0.606857i
\(773\) −2.31520 11.6393i −0.0832719 0.418636i