Properties

Label 192.2.r
Level $192$
Weight $2$
Character orbit 192.r
Rep. character $\chi_{192}(13,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $128$
Newform subspaces $1$
Sturm bound $64$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 192.r (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 64 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 1 \)
Sturm bound: \(64\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(192, [\chi])\).

Total New Old
Modular forms 272 128 144
Cusp forms 240 128 112
Eisenstein series 32 0 32

Trace form

\( 128 q - 16 q^{22} - 80 q^{26} - 80 q^{28} - 80 q^{32} - 80 q^{34} - 80 q^{38} - 80 q^{40} - 16 q^{44} + 48 q^{50} - 32 q^{51} + 48 q^{52} + 16 q^{54} - 64 q^{55} + 112 q^{56} - 128 q^{59} + 96 q^{60} + 96 q^{62}+ \cdots - 96 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(192, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
192.2.r.a 192.r 64.i $128$ $1.533$ None 192.2.r.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$

Decomposition of \(S_{2}^{\mathrm{old}}(192, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(192, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)