Properties

Label 192.2.f.a.95.2
Level $192$
Weight $2$
Character 192.95
Analytic conductor $1.533$
Analytic rank $0$
Dimension $4$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,2,Mod(95,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.95");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 192.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.53312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 95.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 192.95
Dual form 192.2.f.a.95.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +3.46410 q^{5} +2.00000i q^{7} -3.00000 q^{9} +O(q^{10})\) \(q-1.73205i q^{3} +3.46410 q^{5} +2.00000i q^{7} -3.00000 q^{9} -3.46410i q^{11} -6.00000i q^{15} +3.46410 q^{21} +7.00000 q^{25} +5.19615i q^{27} -10.3923 q^{29} +10.0000i q^{31} -6.00000 q^{33} +6.92820i q^{35} -10.3923 q^{45} +3.00000 q^{49} +3.46410 q^{53} -12.0000i q^{55} +10.3923i q^{59} -6.00000i q^{63} -14.0000 q^{73} -12.1244i q^{75} +6.92820 q^{77} +10.0000i q^{79} +9.00000 q^{81} -17.3205i q^{83} +18.0000i q^{87} +17.3205 q^{93} +2.00000 q^{97} +10.3923i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 12 q^{9} + 28 q^{25} - 24 q^{33} + 12 q^{49} - 56 q^{73} + 36 q^{81} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 1.00000i
\(4\) 0 0
\(5\) 3.46410 1.54919 0.774597 0.632456i \(-0.217953\pi\)
0.774597 + 0.632456i \(0.217953\pi\)
\(6\) 0 0
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) − 3.46410i − 1.04447i −0.852803 0.522233i \(-0.825099\pi\)
0.852803 0.522233i \(-0.174901\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) − 6.00000i − 1.54919i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 3.46410 0.755929
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 7.00000 1.40000
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) −10.3923 −1.92980 −0.964901 0.262613i \(-0.915416\pi\)
−0.964901 + 0.262613i \(0.915416\pi\)
\(30\) 0 0
\(31\) 10.0000i 1.79605i 0.439941 + 0.898027i \(0.354999\pi\)
−0.439941 + 0.898027i \(0.645001\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) 6.92820i 1.17108i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −10.3923 −1.54919
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.46410 0.475831 0.237915 0.971286i \(-0.423536\pi\)
0.237915 + 0.971286i \(0.423536\pi\)
\(54\) 0 0
\(55\) − 12.0000i − 1.61808i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.3923i 1.35296i 0.736460 + 0.676481i \(0.236496\pi\)
−0.736460 + 0.676481i \(0.763504\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) − 6.00000i − 0.755929i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 0 0
\(75\) − 12.1244i − 1.40000i
\(76\) 0 0
\(77\) 6.92820 0.789542
\(78\) 0 0
\(79\) 10.0000i 1.12509i 0.826767 + 0.562544i \(0.190177\pi\)
−0.826767 + 0.562544i \(0.809823\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) − 17.3205i − 1.90117i −0.310460 0.950586i \(-0.600483\pi\)
0.310460 0.950586i \(-0.399517\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 18.0000i 1.92980i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 17.3205 1.79605
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 10.3923i 1.04447i
\(100\) 0 0
\(101\) 3.46410 0.344691 0.172345 0.985037i \(-0.444865\pi\)
0.172345 + 0.985037i \(0.444865\pi\)
\(102\) 0 0
\(103\) − 14.0000i − 1.37946i −0.724066 0.689730i \(-0.757729\pi\)
0.724066 0.689730i \(-0.242271\pi\)
\(104\) 0 0
\(105\) 12.0000 1.17108
\(106\) 0 0
\(107\) − 17.3205i − 1.67444i −0.546869 0.837218i \(-0.684180\pi\)
0.546869 0.837218i \(-0.315820\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) − 22.0000i − 1.95218i −0.217357 0.976092i \(-0.569744\pi\)
0.217357 0.976092i \(-0.430256\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 3.46410i − 0.302660i −0.988483 0.151330i \(-0.951644\pi\)
0.988483 0.151330i \(-0.0483556\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 18.0000i 1.54919i
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −36.0000 −2.98964
\(146\) 0 0
\(147\) − 5.19615i − 0.428571i
\(148\) 0 0
\(149\) −24.2487 −1.98653 −0.993266 0.115857i \(-0.963039\pi\)
−0.993266 + 0.115857i \(0.963039\pi\)
\(150\) 0 0
\(151\) 2.00000i 0.162758i 0.996683 + 0.0813788i \(0.0259324\pi\)
−0.996683 + 0.0813788i \(0.974068\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 34.6410i 2.78243i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) − 6.00000i − 0.475831i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) −20.7846 −1.61808
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.3205 1.31685 0.658427 0.752645i \(-0.271222\pi\)
0.658427 + 0.752645i \(0.271222\pi\)
\(174\) 0 0
\(175\) 14.0000i 1.05830i
\(176\) 0 0
\(177\) 18.0000 1.35296
\(178\) 0 0
\(179\) 24.2487i 1.81243i 0.422813 + 0.906217i \(0.361043\pi\)
−0.422813 + 0.906217i \(0.638957\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −10.3923 −0.755929
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 26.0000 1.87152 0.935760 0.352636i \(-0.114715\pi\)
0.935760 + 0.352636i \(0.114715\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −24.2487 −1.72765 −0.863825 0.503793i \(-0.831938\pi\)
−0.863825 + 0.503793i \(0.831938\pi\)
\(198\) 0 0
\(199\) − 14.0000i − 0.992434i −0.868199 0.496217i \(-0.834722\pi\)
0.868199 0.496217i \(-0.165278\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 20.7846i − 1.45879i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −20.0000 −1.35769
\(218\) 0 0
\(219\) 24.2487i 1.63858i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 26.0000i 1.74109i 0.492090 + 0.870544i \(0.336233\pi\)
−0.492090 + 0.870544i \(0.663767\pi\)
\(224\) 0 0
\(225\) −21.0000 −1.40000
\(226\) 0 0
\(227\) 10.3923i 0.689761i 0.938647 + 0.344881i \(0.112081\pi\)
−0.938647 + 0.344881i \(0.887919\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) − 12.0000i − 0.789542i
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 17.3205 1.12509
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 1.00000i
\(244\) 0 0
\(245\) 10.3923 0.663940
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −30.0000 −1.90117
\(250\) 0 0
\(251\) − 31.1769i − 1.96787i −0.178529 0.983935i \(-0.557134\pi\)
0.178529 0.983935i \(-0.442866\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 31.1769 1.92980
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.3923 −0.633630 −0.316815 0.948487i \(-0.602613\pi\)
−0.316815 + 0.948487i \(0.602613\pi\)
\(270\) 0 0
\(271\) − 22.0000i − 1.33640i −0.743980 0.668202i \(-0.767064\pi\)
0.743980 0.668202i \(-0.232936\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 24.2487i − 1.46225i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) − 30.0000i − 1.79605i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) − 3.46410i − 0.203069i
\(292\) 0 0
\(293\) 31.1769 1.82137 0.910687 0.413096i \(-0.135553\pi\)
0.910687 + 0.413096i \(0.135553\pi\)
\(294\) 0 0
\(295\) 36.0000i 2.09600i
\(296\) 0 0
\(297\) 18.0000 1.04447
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 6.00000i − 0.344691i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −24.2487 −1.37946
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 34.0000 1.92179 0.960897 0.276907i \(-0.0893093\pi\)
0.960897 + 0.276907i \(0.0893093\pi\)
\(314\) 0 0
\(315\) − 20.7846i − 1.17108i
\(316\) 0 0
\(317\) 17.3205 0.972817 0.486408 0.873732i \(-0.338307\pi\)
0.486408 + 0.873732i \(0.338307\pi\)
\(318\) 0 0
\(319\) 36.0000i 2.01561i
\(320\) 0 0
\(321\) −30.0000 −1.67444
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 34.6410 1.87592
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 24.2487i 1.30174i 0.759190 + 0.650870i \(0.225596\pi\)
−0.759190 + 0.650870i \(0.774404\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 1.73205i 0.0909091i
\(364\) 0 0
\(365\) −48.4974 −2.53847
\(366\) 0 0
\(367\) − 38.0000i − 1.98358i −0.127862 0.991792i \(-0.540812\pi\)
0.127862 0.991792i \(-0.459188\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.92820i 0.359694i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) − 12.0000i − 0.619677i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −38.1051 −1.95218
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 24.0000 1.22315
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −24.2487 −1.22946 −0.614729 0.788738i \(-0.710735\pi\)
−0.614729 + 0.788738i \(0.710735\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −6.00000 −0.302660
\(394\) 0 0
\(395\) 34.6410i 1.74298i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 31.1769 1.54919
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −20.7846 −1.02274
\(414\) 0 0
\(415\) − 60.0000i − 2.94528i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.3923i 0.507697i 0.967244 + 0.253849i \(0.0816965\pi\)
−0.967244 + 0.253849i \(0.918303\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 62.3538i 2.98964i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 34.0000i 1.62273i 0.584539 + 0.811366i \(0.301275\pi\)
−0.584539 + 0.811366i \(0.698725\pi\)
\(440\) 0 0
\(441\) −9.00000 −0.428571
\(442\) 0 0
\(443\) − 31.1769i − 1.48126i −0.671913 0.740630i \(-0.734527\pi\)
0.671913 0.740630i \(-0.265473\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 42.0000i 1.98653i
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 3.46410 0.162758
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −38.0000 −1.77757 −0.888783 0.458329i \(-0.848448\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −38.1051 −1.77473 −0.887366 0.461065i \(-0.847467\pi\)
−0.887366 + 0.461065i \(0.847467\pi\)
\(462\) 0 0
\(463\) 26.0000i 1.20832i 0.796862 + 0.604161i \(0.206492\pi\)
−0.796862 + 0.604161i \(0.793508\pi\)
\(464\) 0 0
\(465\) 60.0000 2.78243
\(466\) 0 0
\(467\) − 17.3205i − 0.801498i −0.916188 0.400749i \(-0.868750\pi\)
0.916188 0.400749i \(-0.131250\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −10.3923 −0.475831
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.92820 0.314594
\(486\) 0 0
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 38.1051i 1.71966i 0.510581 + 0.859830i \(0.329431\pi\)
−0.510581 + 0.859830i \(0.670569\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 36.0000i 1.61808i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) − 22.5167i − 1.00000i
\(508\) 0 0
\(509\) 45.0333 1.99607 0.998033 0.0626839i \(-0.0199660\pi\)
0.998033 + 0.0626839i \(0.0199660\pi\)
\(510\) 0 0
\(511\) − 28.0000i − 1.23865i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 48.4974i − 2.13705i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) − 30.0000i − 1.31685i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 24.2487 1.05830
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) − 31.1769i − 1.35296i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 60.0000i − 2.59403i
\(536\) 0 0
\(537\) 42.0000 1.81243
\(538\) 0 0
\(539\) − 10.3923i − 0.447628i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −20.0000 −0.850487
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 45.0333 1.90812 0.954062 0.299611i \(-0.0968568\pi\)
0.954062 + 0.299611i \(0.0968568\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 38.1051i 1.60594i 0.596020 + 0.802970i \(0.296748\pi\)
−0.596020 + 0.802970i \(0.703252\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 18.0000i 0.755929i
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 0 0
\(579\) − 45.0333i − 1.87152i
\(580\) 0 0
\(581\) 34.6410 1.43715
\(582\) 0 0
\(583\) − 12.0000i − 0.496989i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 17.3205i − 0.714894i −0.933933 0.357447i \(-0.883647\pi\)
0.933933 0.357447i \(-0.116353\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 42.0000i 1.72765i
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −24.2487 −0.992434
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.46410 −0.140836
\(606\) 0 0
\(607\) − 22.0000i − 0.892952i −0.894795 0.446476i \(-0.852679\pi\)
0.894795 0.446476i \(-0.147321\pi\)
\(608\) 0 0
\(609\) −36.0000 −1.45879
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 50.0000i 1.99047i 0.0975126 + 0.995234i \(0.468911\pi\)
−0.0975126 + 0.995234i \(0.531089\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 76.2102i − 3.02431i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 34.6410i 1.35769i
\(652\) 0 0
\(653\) 17.3205 0.677804 0.338902 0.940822i \(-0.389945\pi\)
0.338902 + 0.940822i \(0.389945\pi\)
\(654\) 0 0
\(655\) − 12.0000i − 0.468879i
\(656\) 0 0
\(657\) 42.0000 1.63858
\(658\) 0 0
\(659\) 24.2487i 0.944596i 0.881439 + 0.472298i \(0.156575\pi\)
−0.881439 + 0.472298i \(0.843425\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 45.0333 1.74109
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) 36.3731i 1.40000i
\(676\) 0 0
\(677\) −51.9615 −1.99704 −0.998522 0.0543526i \(-0.982690\pi\)
−0.998522 + 0.0543526i \(0.982690\pi\)
\(678\) 0 0
\(679\) 4.00000i 0.153506i
\(680\) 0 0
\(681\) 18.0000 0.689761
\(682\) 0 0
\(683\) 51.9615i 1.98825i 0.108227 + 0.994126i \(0.465483\pi\)
−0.108227 + 0.994126i \(0.534517\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) −20.7846 −0.789542
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −38.1051 −1.43921 −0.719605 0.694383i \(-0.755677\pi\)
−0.719605 + 0.694383i \(0.755677\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.92820i 0.260562i
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) − 30.0000i − 1.12509i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 28.0000 1.04277
\(722\) 0 0
\(723\) − 17.3205i − 0.644157i
\(724\) 0 0
\(725\) −72.7461 −2.70172
\(726\) 0 0
\(727\) 2.00000i 0.0741759i 0.999312 + 0.0370879i \(0.0118082\pi\)
−0.999312 + 0.0370879i \(0.988192\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) − 18.0000i − 0.663940i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −84.0000 −3.07752
\(746\) 0 0
\(747\) 51.9615i 1.90117i
\(748\) 0 0
\(749\) 34.6410 1.26576
\(750\) 0 0
\(751\) 10.0000i 0.364905i 0.983215 + 0.182453i \(0.0584036\pi\)
−0.983215 + 0.182453i \(0.941596\pi\)
\(752\) 0 0
\(753\) −54.0000 −1.96787
\(754\) 0 0
\(755\) 6.92820i 0.252143i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −51.9615 −1.86893 −0.934463 0.356060i \(-0.884120\pi\)
−0.934463 + 0.356060i \(0.884120\pi\)
\(774\) 0 0
\(775\) 70.0000i 2.51447i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) − 54.0000i − 1.92980i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 20.7846i − 0.737154i
\(796\) 0 0
\(797\) 17.3205 0.613524 0.306762 0.951786i \(-0.400754\pi\)
0.306762 + 0.951786i \(0.400754\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 48.4974i 1.71144i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.0000i 0.633630i
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) −38.1051 −1.33640
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.1769 1.08808 0.544041 0.839059i \(-0.316894\pi\)
0.544041 + 0.839059i \(0.316894\pi\)
\(822\) 0 0
\(823\) − 46.0000i − 1.60346i −0.597687 0.801730i \(-0.703913\pi\)
0.597687 0.801730i \(-0.296087\pi\)
\(824\) 0 0
\(825\) −42.0000 −1.46225
\(826\) 0 0
\(827\) 10.3923i 0.361376i 0.983540 + 0.180688i \(0.0578324\pi\)
−0.983540 + 0.180688i \(0.942168\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −51.9615 −1.79605
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 79.0000 2.72414
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 45.0333 1.54919
\(846\) 0 0
\(847\) − 2.00000i − 0.0687208i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 60.0000 2.04006
\(866\) 0 0
\(867\) − 29.4449i − 1.00000i
\(868\) 0 0
\(869\) 34.6410 1.17512
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −6.00000 −0.203069
\(874\) 0 0
\(875\) 13.8564i 0.468432i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) − 54.0000i − 1.82137i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 62.3538 2.09600
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 44.0000 1.47571
\(890\) 0 0
\(891\) − 31.1769i − 1.04447i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 84.0000i 2.80781i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 103.923i − 3.46603i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) −10.3923 −0.344691
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −60.0000 −1.98571
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.92820 0.228789
\(918\) 0 0
\(919\) 50.0000i 1.64935i 0.565608 + 0.824674i \(0.308641\pi\)
−0.565608 + 0.824674i \(0.691359\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 42.0000i 1.37946i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 58.0000 1.89478 0.947389 0.320085i \(-0.103712\pi\)
0.947389 + 0.320085i \(0.103712\pi\)
\(938\) 0 0
\(939\) − 58.8897i − 1.92179i
\(940\) 0 0
\(941\) −38.1051 −1.24219 −0.621096 0.783735i \(-0.713312\pi\)
−0.621096 + 0.783735i \(0.713312\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −36.0000 −1.17108
\(946\) 0 0
\(947\) 24.2487i 0.787977i 0.919115 + 0.393989i \(0.128905\pi\)
−0.919115 + 0.393989i \(0.871095\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 30.0000i − 0.972817i
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 62.3538 2.01561
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −69.0000 −2.22581
\(962\) 0 0
\(963\) 51.9615i 1.67444i
\(964\) 0 0
\(965\) 90.0666 2.89935
\(966\) 0 0
\(967\) − 62.0000i − 1.99379i −0.0787703 0.996893i \(-0.525099\pi\)
0.0787703 0.996893i \(-0.474901\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 3.46410i − 0.111168i −0.998454 0.0555842i \(-0.982298\pi\)
0.998454 0.0555842i \(-0.0177021\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −84.0000 −2.67646
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 58.0000i 1.84243i 0.389053 + 0.921215i \(0.372802\pi\)
−0.389053 + 0.921215i \(0.627198\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 48.4974i − 1.53747i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.2.f.a.95.2 yes 4
3.2 odd 2 inner 192.2.f.a.95.3 yes 4
4.3 odd 2 inner 192.2.f.a.95.4 yes 4
8.3 odd 2 inner 192.2.f.a.95.1 4
8.5 even 2 inner 192.2.f.a.95.3 yes 4
12.11 even 2 inner 192.2.f.a.95.1 4
16.3 odd 4 768.2.c.i.767.1 4
16.5 even 4 768.2.c.i.767.2 4
16.11 odd 4 768.2.c.i.767.4 4
16.13 even 4 768.2.c.i.767.3 4
24.5 odd 2 CM 192.2.f.a.95.2 yes 4
24.11 even 2 inner 192.2.f.a.95.4 yes 4
48.5 odd 4 768.2.c.i.767.3 4
48.11 even 4 768.2.c.i.767.1 4
48.29 odd 4 768.2.c.i.767.2 4
48.35 even 4 768.2.c.i.767.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.2.f.a.95.1 4 8.3 odd 2 inner
192.2.f.a.95.1 4 12.11 even 2 inner
192.2.f.a.95.2 yes 4 1.1 even 1 trivial
192.2.f.a.95.2 yes 4 24.5 odd 2 CM
192.2.f.a.95.3 yes 4 3.2 odd 2 inner
192.2.f.a.95.3 yes 4 8.5 even 2 inner
192.2.f.a.95.4 yes 4 4.3 odd 2 inner
192.2.f.a.95.4 yes 4 24.11 even 2 inner
768.2.c.i.767.1 4 16.3 odd 4
768.2.c.i.767.1 4 48.11 even 4
768.2.c.i.767.2 4 16.5 even 4
768.2.c.i.767.2 4 48.29 odd 4
768.2.c.i.767.3 4 16.13 even 4
768.2.c.i.767.3 4 48.5 odd 4
768.2.c.i.767.4 4 16.11 odd 4
768.2.c.i.767.4 4 48.35 even 4