Newspace parameters
Level: | \( N \) | \(=\) | \( 192 = 2^{6} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 192.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.53312771881\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 48) |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).
\(n\) | \(65\) | \(127\) | \(133\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
191.1 |
|
0 | − | 1.73205i | 0 | 0 | 0 | − | 3.46410i | 0 | −3.00000 | 0 | ||||||||||||||||||||||
191.2 | 0 | 1.73205i | 0 | 0 | 0 | 3.46410i | 0 | −3.00000 | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-3}) \) |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 192.2.c.a | 2 | |
3.b | odd | 2 | 1 | CM | 192.2.c.a | 2 | |
4.b | odd | 2 | 1 | inner | 192.2.c.a | 2 | |
8.b | even | 2 | 1 | 48.2.c.a | ✓ | 2 | |
8.d | odd | 2 | 1 | 48.2.c.a | ✓ | 2 | |
12.b | even | 2 | 1 | inner | 192.2.c.a | 2 | |
16.e | even | 4 | 2 | 768.2.f.d | 4 | ||
16.f | odd | 4 | 2 | 768.2.f.d | 4 | ||
24.f | even | 2 | 1 | 48.2.c.a | ✓ | 2 | |
24.h | odd | 2 | 1 | 48.2.c.a | ✓ | 2 | |
40.e | odd | 2 | 1 | 1200.2.h.e | 2 | ||
40.f | even | 2 | 1 | 1200.2.h.e | 2 | ||
40.i | odd | 4 | 2 | 1200.2.o.i | 4 | ||
40.k | even | 4 | 2 | 1200.2.o.i | 4 | ||
48.i | odd | 4 | 2 | 768.2.f.d | 4 | ||
48.k | even | 4 | 2 | 768.2.f.d | 4 | ||
56.e | even | 2 | 1 | 2352.2.h.c | 2 | ||
56.h | odd | 2 | 1 | 2352.2.h.c | 2 | ||
72.j | odd | 6 | 1 | 1296.2.s.b | 2 | ||
72.j | odd | 6 | 1 | 1296.2.s.e | 2 | ||
72.l | even | 6 | 1 | 1296.2.s.b | 2 | ||
72.l | even | 6 | 1 | 1296.2.s.e | 2 | ||
72.n | even | 6 | 1 | 1296.2.s.b | 2 | ||
72.n | even | 6 | 1 | 1296.2.s.e | 2 | ||
72.p | odd | 6 | 1 | 1296.2.s.b | 2 | ||
72.p | odd | 6 | 1 | 1296.2.s.e | 2 | ||
120.i | odd | 2 | 1 | 1200.2.h.e | 2 | ||
120.m | even | 2 | 1 | 1200.2.h.e | 2 | ||
120.q | odd | 4 | 2 | 1200.2.o.i | 4 | ||
120.w | even | 4 | 2 | 1200.2.o.i | 4 | ||
168.e | odd | 2 | 1 | 2352.2.h.c | 2 | ||
168.i | even | 2 | 1 | 2352.2.h.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
48.2.c.a | ✓ | 2 | 8.b | even | 2 | 1 | |
48.2.c.a | ✓ | 2 | 8.d | odd | 2 | 1 | |
48.2.c.a | ✓ | 2 | 24.f | even | 2 | 1 | |
48.2.c.a | ✓ | 2 | 24.h | odd | 2 | 1 | |
192.2.c.a | 2 | 1.a | even | 1 | 1 | trivial | |
192.2.c.a | 2 | 3.b | odd | 2 | 1 | CM | |
192.2.c.a | 2 | 4.b | odd | 2 | 1 | inner | |
192.2.c.a | 2 | 12.b | even | 2 | 1 | inner | |
768.2.f.d | 4 | 16.e | even | 4 | 2 | ||
768.2.f.d | 4 | 16.f | odd | 4 | 2 | ||
768.2.f.d | 4 | 48.i | odd | 4 | 2 | ||
768.2.f.d | 4 | 48.k | even | 4 | 2 | ||
1200.2.h.e | 2 | 40.e | odd | 2 | 1 | ||
1200.2.h.e | 2 | 40.f | even | 2 | 1 | ||
1200.2.h.e | 2 | 120.i | odd | 2 | 1 | ||
1200.2.h.e | 2 | 120.m | even | 2 | 1 | ||
1200.2.o.i | 4 | 40.i | odd | 4 | 2 | ||
1200.2.o.i | 4 | 40.k | even | 4 | 2 | ||
1200.2.o.i | 4 | 120.q | odd | 4 | 2 | ||
1200.2.o.i | 4 | 120.w | even | 4 | 2 | ||
1296.2.s.b | 2 | 72.j | odd | 6 | 1 | ||
1296.2.s.b | 2 | 72.l | even | 6 | 1 | ||
1296.2.s.b | 2 | 72.n | even | 6 | 1 | ||
1296.2.s.b | 2 | 72.p | odd | 6 | 1 | ||
1296.2.s.e | 2 | 72.j | odd | 6 | 1 | ||
1296.2.s.e | 2 | 72.l | even | 6 | 1 | ||
1296.2.s.e | 2 | 72.n | even | 6 | 1 | ||
1296.2.s.e | 2 | 72.p | odd | 6 | 1 | ||
2352.2.h.c | 2 | 56.e | even | 2 | 1 | ||
2352.2.h.c | 2 | 56.h | odd | 2 | 1 | ||
2352.2.h.c | 2 | 168.e | odd | 2 | 1 | ||
2352.2.h.c | 2 | 168.i | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} \)
acting on \(S_{2}^{\mathrm{new}}(192, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + 3 \)
$5$
\( T^{2} \)
$7$
\( T^{2} + 12 \)
$11$
\( T^{2} \)
$13$
\( (T - 2)^{2} \)
$17$
\( T^{2} \)
$19$
\( T^{2} + 12 \)
$23$
\( T^{2} \)
$29$
\( T^{2} \)
$31$
\( T^{2} + 108 \)
$37$
\( (T - 10)^{2} \)
$41$
\( T^{2} \)
$43$
\( T^{2} + 108 \)
$47$
\( T^{2} \)
$53$
\( T^{2} \)
$59$
\( T^{2} \)
$61$
\( (T + 14)^{2} \)
$67$
\( T^{2} + 12 \)
$71$
\( T^{2} \)
$73$
\( (T - 10)^{2} \)
$79$
\( T^{2} + 300 \)
$83$
\( T^{2} \)
$89$
\( T^{2} \)
$97$
\( (T + 14)^{2} \)
show more
show less