Properties

Label 192.2.c
Level $192$
Weight $2$
Character orbit 192.c
Rep. character $\chi_{192}(191,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $2$
Sturm bound $64$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 192.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(64\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(192, [\chi])\).

Total New Old
Modular forms 44 10 34
Cusp forms 20 6 14
Eisenstein series 24 4 20

Trace form

\( 6 q - 2 q^{9} + O(q^{10}) \) \( 6 q - 2 q^{9} + 12 q^{13} - 4 q^{21} - 2 q^{25} - 16 q^{33} - 4 q^{37} - 32 q^{45} + 2 q^{49} + 12 q^{57} - 20 q^{61} + 32 q^{69} - 4 q^{73} - 10 q^{81} + 44 q^{93} + 12 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(192, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
192.2.c.a 192.c 12.b $2$ $1.533$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 48.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta q^{3}-2\beta q^{7}-3 q^{9}+2 q^{13}+\cdots\)
192.2.c.b 192.c 12.b $4$ $1.533$ \(\Q(\zeta_{8})\) None 96.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_1 q^{3}-\beta_{3} q^{5}+(-\beta_{2}+\beta_1)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(192, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(192, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)