Defining parameters
Level: | \( N \) | \(=\) | \( 192 = 2^{6} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 192.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(192, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 10 | 34 |
Cusp forms | 20 | 6 | 14 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(192, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
192.2.c.a | $2$ | $1.533$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta q^{3}-2\beta q^{7}-3 q^{9}+2 q^{13}+\cdots\) |
192.2.c.b | $4$ | $1.533$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_1 q^{3}-\beta_{3} q^{5}+(-\beta_{2}+\beta_1)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(192, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(192, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)