Properties

Label 192.2.a.a.1.1
Level 192
Weight 2
Character 192.1
Self dual yes
Analytic conductor 1.533
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 192.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(1.53312771881\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 96)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\) of \(x\)
Character \(\chi\) \(=\) 192.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -2.00000 q^{5} -4.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -2.00000 q^{5} -4.00000 q^{7} +1.00000 q^{9} -4.00000 q^{11} +2.00000 q^{13} +2.00000 q^{15} -6.00000 q^{17} +4.00000 q^{19} +4.00000 q^{21} -1.00000 q^{25} -1.00000 q^{27} -2.00000 q^{29} +4.00000 q^{31} +4.00000 q^{33} +8.00000 q^{35} +2.00000 q^{37} -2.00000 q^{39} +2.00000 q^{41} -4.00000 q^{43} -2.00000 q^{45} +8.00000 q^{47} +9.00000 q^{49} +6.00000 q^{51} -10.0000 q^{53} +8.00000 q^{55} -4.00000 q^{57} +4.00000 q^{59} -6.00000 q^{61} -4.00000 q^{63} -4.00000 q^{65} -4.00000 q^{67} -16.0000 q^{71} -6.00000 q^{73} +1.00000 q^{75} +16.0000 q^{77} +4.00000 q^{79} +1.00000 q^{81} -12.0000 q^{83} +12.0000 q^{85} +2.00000 q^{87} +10.0000 q^{89} -8.00000 q^{91} -4.00000 q^{93} -8.00000 q^{95} -14.0000 q^{97} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) 8.00000 1.35225
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) −4.00000 −0.503953
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 16.0000 1.82337
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 0 0
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 0 0
\(93\) −4.00000 −0.414781
\(94\) 0 0
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −12.0000 −1.18240 −0.591198 0.806527i \(-0.701345\pi\)
−0.591198 + 0.806527i \(0.701345\pi\)
\(104\) 0 0
\(105\) −8.00000 −0.780720
\(106\) 0 0
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 24.0000 2.20008
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −20.0000 −1.77471 −0.887357 0.461084i \(-0.847461\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) −16.0000 −1.38738
\(134\) 0 0
\(135\) 2.00000 0.172133
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) −9.00000 −0.742307
\(148\) 0 0
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) −8.00000 −0.622799
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 24.0000 1.75505
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 18.0000 1.29567 0.647834 0.761781i \(-0.275675\pi\)
0.647834 + 0.761781i \(0.275675\pi\)
\(194\) 0 0
\(195\) 4.00000 0.286446
\(196\) 0 0
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 8.00000 0.561490
\(204\) 0 0
\(205\) −4.00000 −0.279372
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) 16.0000 1.09630
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) 0 0
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) −16.0000 −1.05272
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −16.0000 −1.04372
\(236\) 0 0
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −18.0000 −1.14998
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −12.0000 −0.751469
\(256\) 0 0
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 20.0000 1.22859
\(266\) 0 0
\(267\) −10.0000 −0.611990
\(268\) 0 0
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 12.0000 0.728948 0.364474 0.931214i \(-0.381249\pi\)
0.364474 + 0.931214i \(0.381249\pi\)
\(272\) 0 0
\(273\) 8.00000 0.484182
\(274\) 0 0
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) 0 0
\(285\) 8.00000 0.473879
\(286\) 0 0
\(287\) −8.00000 −0.472225
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 14.0000 0.820695
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) 12.0000 0.687118
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 12.0000 0.682656
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 0 0
\(315\) 8.00000 0.450749
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 0 0
\(327\) 14.0000 0.774202
\(328\) 0 0
\(329\) −32.0000 −1.76422
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 0 0
\(333\) 2.00000 0.109599
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −20.0000 −1.07366 −0.536828 0.843692i \(-0.680378\pi\)
−0.536828 + 0.843692i \(0.680378\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) 32.0000 1.69838
\(356\) 0 0
\(357\) −24.0000 −1.27021
\(358\) 0 0
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) 12.0000 0.628109
\(366\) 0 0
\(367\) −12.0000 −0.626395 −0.313197 0.949688i \(-0.601400\pi\)
−0.313197 + 0.949688i \(0.601400\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) 40.0000 2.07670
\(372\) 0 0
\(373\) 34.0000 1.76045 0.880227 0.474554i \(-0.157390\pi\)
0.880227 + 0.474554i \(0.157390\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 20.0000 1.02463
\(382\) 0 0
\(383\) 32.0000 1.63512 0.817562 0.575841i \(-0.195325\pi\)
0.817562 + 0.575841i \(0.195325\pi\)
\(384\) 0 0
\(385\) −32.0000 −1.63087
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 0 0
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 4.00000 0.201773
\(394\) 0 0
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 16.0000 0.801002
\(400\) 0 0
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 0 0
\(405\) −2.00000 −0.0993808
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 0 0
\(413\) −16.0000 −0.787309
\(414\) 0 0
\(415\) 24.0000 1.17811
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) −38.0000 −1.85201 −0.926003 0.377515i \(-0.876779\pi\)
−0.926003 + 0.377515i \(0.876779\pi\)
\(422\) 0 0
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) 6.00000 0.291043
\(426\) 0 0
\(427\) 24.0000 1.16144
\(428\) 0 0
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) −4.00000 −0.191785
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) −20.0000 −0.948091
\(446\) 0 0
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 0 0
\(453\) −12.0000 −0.563809
\(454\) 0 0
\(455\) 16.0000 0.750092
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 0 0
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 0 0
\(465\) 8.00000 0.370991
\(466\) 0 0
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) 0 0
\(473\) 16.0000 0.735681
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) −10.0000 −0.457869
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.0000 1.27141
\(486\) 0 0
\(487\) −4.00000 −0.181257 −0.0906287 0.995885i \(-0.528888\pi\)
−0.0906287 + 0.995885i \(0.528888\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 12.0000 0.540453
\(494\) 0 0
\(495\) 8.00000 0.359573
\(496\) 0 0
\(497\) 64.0000 2.87079
\(498\) 0 0
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 24.0000 1.06170
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) 24.0000 1.05757
\(516\) 0 0
\(517\) −32.0000 −1.40736
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) 12.0000 0.524723 0.262362 0.964970i \(-0.415499\pi\)
0.262362 + 0.964970i \(0.415499\pi\)
\(524\) 0 0
\(525\) −4.00000 −0.174574
\(526\) 0 0
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) 4.00000 0.173259
\(534\) 0 0
\(535\) −8.00000 −0.345870
\(536\) 0 0
\(537\) −12.0000 −0.517838
\(538\) 0 0
\(539\) −36.0000 −1.55063
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) −10.0000 −0.429141
\(544\) 0 0
\(545\) 28.0000 1.19939
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 0 0
\(549\) −6.00000 −0.256074
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) −16.0000 −0.680389
\(554\) 0 0
\(555\) 4.00000 0.169791
\(556\) 0 0
\(557\) 22.0000 0.932170 0.466085 0.884740i \(-0.345664\pi\)
0.466085 + 0.884740i \(0.345664\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) −24.0000 −1.01328
\(562\) 0 0
\(563\) −12.0000 −0.505740 −0.252870 0.967500i \(-0.581374\pi\)
−0.252870 + 0.967500i \(0.581374\pi\)
\(564\) 0 0
\(565\) −4.00000 −0.168281
\(566\) 0 0
\(567\) −4.00000 −0.167984
\(568\) 0 0
\(569\) −46.0000 −1.92842 −0.964210 0.265139i \(-0.914582\pi\)
−0.964210 + 0.265139i \(0.914582\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) −18.0000 −0.748054
\(580\) 0 0
\(581\) 48.0000 1.99138
\(582\) 0 0
\(583\) 40.0000 1.65663
\(584\) 0 0
\(585\) −4.00000 −0.165380
\(586\) 0 0
\(587\) 36.0000 1.48588 0.742940 0.669359i \(-0.233431\pi\)
0.742940 + 0.669359i \(0.233431\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) −22.0000 −0.904959
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) −48.0000 −1.96781
\(596\) 0 0
\(597\) −4.00000 −0.163709
\(598\) 0 0
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) −10.0000 −0.406558
\(606\) 0 0
\(607\) −20.0000 −0.811775 −0.405887 0.913923i \(-0.633038\pi\)
−0.405887 + 0.913923i \(0.633038\pi\)
\(608\) 0 0
\(609\) −8.00000 −0.324176
\(610\) 0 0
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) 18.0000 0.727013 0.363507 0.931592i \(-0.381579\pi\)
0.363507 + 0.931592i \(0.381579\pi\)
\(614\) 0 0
\(615\) 4.00000 0.161296
\(616\) 0 0
\(617\) 42.0000 1.69086 0.845428 0.534089i \(-0.179345\pi\)
0.845428 + 0.534089i \(0.179345\pi\)
\(618\) 0 0
\(619\) −12.0000 −0.482321 −0.241160 0.970485i \(-0.577528\pi\)
−0.241160 + 0.970485i \(0.577528\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −40.0000 −1.60257
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 16.0000 0.638978
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −20.0000 −0.796187 −0.398094 0.917345i \(-0.630328\pi\)
−0.398094 + 0.917345i \(0.630328\pi\)
\(632\) 0 0
\(633\) 20.0000 0.794929
\(634\) 0 0
\(635\) 40.0000 1.58735
\(636\) 0 0
\(637\) 18.0000 0.713186
\(638\) 0 0
\(639\) −16.0000 −0.632950
\(640\) 0 0
\(641\) 10.0000 0.394976 0.197488 0.980305i \(-0.436722\pi\)
0.197488 + 0.980305i \(0.436722\pi\)
\(642\) 0 0
\(643\) −12.0000 −0.473234 −0.236617 0.971603i \(-0.576039\pi\)
−0.236617 + 0.971603i \(0.576039\pi\)
\(644\) 0 0
\(645\) −8.00000 −0.315000
\(646\) 0 0
\(647\) 48.0000 1.88707 0.943537 0.331266i \(-0.107476\pi\)
0.943537 + 0.331266i \(0.107476\pi\)
\(648\) 0 0
\(649\) −16.0000 −0.628055
\(650\) 0 0
\(651\) 16.0000 0.627089
\(652\) 0 0
\(653\) −10.0000 −0.391330 −0.195665 0.980671i \(-0.562687\pi\)
−0.195665 + 0.980671i \(0.562687\pi\)
\(654\) 0 0
\(655\) 8.00000 0.312586
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) 0 0
\(663\) 12.0000 0.466041
\(664\) 0 0
\(665\) 32.0000 1.24091
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 4.00000 0.154649
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 0 0
\(673\) 2.00000 0.0770943 0.0385472 0.999257i \(-0.487727\pi\)
0.0385472 + 0.999257i \(0.487727\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 14.0000 0.538064 0.269032 0.963131i \(-0.413296\pi\)
0.269032 + 0.963131i \(0.413296\pi\)
\(678\) 0 0
\(679\) 56.0000 2.14908
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) −36.0000 −1.37549
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) 0 0
\(689\) −20.0000 −0.761939
\(690\) 0 0
\(691\) 52.0000 1.97817 0.989087 0.147335i \(-0.0470696\pi\)
0.989087 + 0.147335i \(0.0470696\pi\)
\(692\) 0 0
\(693\) 16.0000 0.607790
\(694\) 0 0
\(695\) −40.0000 −1.51729
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 0 0
\(705\) 16.0000 0.602595
\(706\) 0 0
\(707\) −24.0000 −0.902613
\(708\) 0 0
\(709\) −22.0000 −0.826227 −0.413114 0.910679i \(-0.635559\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 16.0000 0.598366
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) 48.0000 1.78761
\(722\) 0 0
\(723\) 14.0000 0.520666
\(724\) 0 0
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) 12.0000 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 18.0000 0.663940
\(736\) 0 0
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 36.0000 1.31894
\(746\) 0 0
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) 0 0
\(753\) −12.0000 −0.437304
\(754\) 0 0
\(755\) −24.0000 −0.873449
\(756\) 0 0
\(757\) −6.00000 −0.218074 −0.109037 0.994038i \(-0.534777\pi\)
−0.109037 + 0.994038i \(0.534777\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 56.0000 2.02734
\(764\) 0 0
\(765\) 12.0000 0.433861
\(766\) 0 0
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) −2.00000 −0.0720282
\(772\) 0 0
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) 8.00000 0.286998
\(778\) 0 0
\(779\) 8.00000 0.286630
\(780\) 0 0
\(781\) 64.0000 2.29010
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) −20.0000 −0.713831
\(786\) 0 0
\(787\) −12.0000 −0.427754 −0.213877 0.976861i \(-0.568609\pi\)
−0.213877 + 0.976861i \(0.568609\pi\)
\(788\) 0 0
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) −8.00000 −0.284447
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 0 0
\(795\) −20.0000 −0.709327
\(796\) 0 0
\(797\) 6.00000 0.212531 0.106265 0.994338i \(-0.466111\pi\)
0.106265 + 0.994338i \(0.466111\pi\)
\(798\) 0 0
\(799\) −48.0000 −1.69812
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 0 0
\(803\) 24.0000 0.846942
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.0000 0.633630
\(808\) 0 0
\(809\) −14.0000 −0.492214 −0.246107 0.969243i \(-0.579151\pi\)
−0.246107 + 0.969243i \(0.579151\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 0 0
\(813\) −12.0000 −0.420858
\(814\) 0 0
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 0 0
\(819\) −8.00000 −0.279543
\(820\) 0 0
\(821\) −26.0000 −0.907406 −0.453703 0.891153i \(-0.649897\pi\)
−0.453703 + 0.891153i \(0.649897\pi\)
\(822\) 0 0
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) 0 0
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) 22.0000 0.763172
\(832\) 0 0
\(833\) −54.0000 −1.87099
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 0 0
\(839\) 32.0000 1.10476 0.552381 0.833592i \(-0.313719\pi\)
0.552381 + 0.833592i \(0.313719\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 6.00000 0.206651
\(844\) 0 0
\(845\) 18.0000 0.619219
\(846\) 0 0
\(847\) −20.0000 −0.687208
\(848\) 0 0
\(849\) 28.0000 0.960958
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 18.0000 0.616308 0.308154 0.951336i \(-0.400289\pi\)
0.308154 + 0.951336i \(0.400289\pi\)
\(854\) 0 0
\(855\) −8.00000 −0.273594
\(856\) 0 0
\(857\) −14.0000 −0.478231 −0.239115 0.970991i \(-0.576857\pi\)
−0.239115 + 0.970991i \(0.576857\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 8.00000 0.272639
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) −12.0000 −0.408012
\(866\) 0 0
\(867\) −19.0000 −0.645274
\(868\) 0 0
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) −48.0000 −1.62270
\(876\) 0 0
\(877\) −22.0000 −0.742887 −0.371444 0.928456i \(-0.621137\pi\)
−0.371444 + 0.928456i \(0.621137\pi\)
\(878\) 0 0
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 8.00000 0.268917
\(886\) 0 0
\(887\) 24.0000 0.805841 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(888\) 0 0
\(889\) 80.0000 2.68311
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) 0 0
\(893\) 32.0000 1.07084
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) 60.0000 1.99889
\(902\) 0 0
\(903\) −16.0000 −0.532447
\(904\) 0 0
\(905\) −20.0000 −0.664822
\(906\) 0 0
\(907\) −20.0000 −0.664089 −0.332045 0.943264i \(-0.607738\pi\)
−0.332045 + 0.943264i \(0.607738\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 48.0000 1.58857
\(914\) 0 0
\(915\) −12.0000 −0.396708
\(916\) 0 0
\(917\) 16.0000 0.528367
\(918\) 0 0
\(919\) −36.0000 −1.18753 −0.593765 0.804638i \(-0.702359\pi\)
−0.593765 + 0.804638i \(0.702359\pi\)
\(920\) 0 0
\(921\) −12.0000 −0.395413
\(922\) 0 0
\(923\) −32.0000 −1.05329
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 0 0
\(927\) −12.0000 −0.394132
\(928\) 0 0
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) 0 0
\(933\) 24.0000 0.785725
\(934\) 0 0
\(935\) −48.0000 −1.56977
\(936\) 0 0
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0 0
\(939\) −10.0000 −0.326338
\(940\) 0 0
\(941\) −58.0000 −1.89075 −0.945373 0.325991i \(-0.894302\pi\)
−0.945373 + 0.325991i \(0.894302\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −8.00000 −0.260240
\(946\) 0 0
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) 18.0000 0.583077 0.291539 0.956559i \(-0.405833\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −8.00000 −0.258603
\(958\) 0 0
\(959\) −72.0000 −2.32500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 4.00000 0.128898
\(964\) 0 0
\(965\) −36.0000 −1.15888
\(966\) 0 0
\(967\) −12.0000 −0.385894 −0.192947 0.981209i \(-0.561805\pi\)
−0.192947 + 0.981209i \(0.561805\pi\)
\(968\) 0 0
\(969\) 24.0000 0.770991
\(970\) 0 0
\(971\) −52.0000 −1.66876 −0.834380 0.551190i \(-0.814174\pi\)
−0.834380 + 0.551190i \(0.814174\pi\)
\(972\) 0 0
\(973\) −80.0000 −2.56468
\(974\) 0 0
\(975\) 2.00000 0.0640513
\(976\) 0 0
\(977\) −22.0000 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(978\) 0 0
\(979\) −40.0000 −1.27841
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) 0 0
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 0 0
\(985\) −44.0000 −1.40196
\(986\) 0 0
\(987\) 32.0000 1.01857
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 52.0000 1.65183 0.825917 0.563791i \(-0.190658\pi\)
0.825917 + 0.563791i \(0.190658\pi\)
\(992\) 0 0
\(993\) 28.0000 0.888553
\(994\) 0 0
\(995\) −8.00000 −0.253617
\(996\) 0 0
\(997\) 18.0000 0.570066 0.285033 0.958518i \(-0.407995\pi\)
0.285033 + 0.958518i \(0.407995\pi\)
\(998\) 0 0
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.2.a.a.1.1 1
3.2 odd 2 576.2.a.g.1.1 1
4.3 odd 2 192.2.a.c.1.1 1
5.2 odd 4 4800.2.f.e.3649.2 2
5.3 odd 4 4800.2.f.e.3649.1 2
5.4 even 2 4800.2.a.co.1.1 1
7.6 odd 2 9408.2.a.ct.1.1 1
8.3 odd 2 96.2.a.a.1.1 1
8.5 even 2 96.2.a.b.1.1 yes 1
12.11 even 2 576.2.a.h.1.1 1
16.3 odd 4 768.2.d.a.385.2 2
16.5 even 4 768.2.d.h.385.2 2
16.11 odd 4 768.2.d.a.385.1 2
16.13 even 4 768.2.d.h.385.1 2
20.3 even 4 4800.2.f.bh.3649.2 2
20.7 even 4 4800.2.f.bh.3649.1 2
20.19 odd 2 4800.2.a.f.1.1 1
24.5 odd 2 288.2.a.b.1.1 1
24.11 even 2 288.2.a.c.1.1 1
28.27 even 2 9408.2.a.bj.1.1 1
40.3 even 4 2400.2.f.a.1249.1 2
40.13 odd 4 2400.2.f.r.1249.2 2
40.19 odd 2 2400.2.a.r.1.1 1
40.27 even 4 2400.2.f.a.1249.2 2
40.29 even 2 2400.2.a.q.1.1 1
40.37 odd 4 2400.2.f.r.1249.1 2
48.5 odd 4 2304.2.d.s.1153.2 2
48.11 even 4 2304.2.d.c.1153.2 2
48.29 odd 4 2304.2.d.s.1153.1 2
48.35 even 4 2304.2.d.c.1153.1 2
56.13 odd 2 4704.2.a.e.1.1 1
56.27 even 2 4704.2.a.t.1.1 1
72.5 odd 6 2592.2.i.w.865.1 2
72.11 even 6 2592.2.i.q.1729.1 2
72.13 even 6 2592.2.i.h.865.1 2
72.29 odd 6 2592.2.i.w.1729.1 2
72.43 odd 6 2592.2.i.b.1729.1 2
72.59 even 6 2592.2.i.q.865.1 2
72.61 even 6 2592.2.i.h.1729.1 2
72.67 odd 6 2592.2.i.b.865.1 2
120.29 odd 2 7200.2.a.bx.1.1 1
120.53 even 4 7200.2.f.f.6049.2 2
120.59 even 2 7200.2.a.e.1.1 1
120.77 even 4 7200.2.f.f.6049.1 2
120.83 odd 4 7200.2.f.x.6049.1 2
120.107 odd 4 7200.2.f.x.6049.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
96.2.a.a.1.1 1 8.3 odd 2
96.2.a.b.1.1 yes 1 8.5 even 2
192.2.a.a.1.1 1 1.1 even 1 trivial
192.2.a.c.1.1 1 4.3 odd 2
288.2.a.b.1.1 1 24.5 odd 2
288.2.a.c.1.1 1 24.11 even 2
576.2.a.g.1.1 1 3.2 odd 2
576.2.a.h.1.1 1 12.11 even 2
768.2.d.a.385.1 2 16.11 odd 4
768.2.d.a.385.2 2 16.3 odd 4
768.2.d.h.385.1 2 16.13 even 4
768.2.d.h.385.2 2 16.5 even 4
2304.2.d.c.1153.1 2 48.35 even 4
2304.2.d.c.1153.2 2 48.11 even 4
2304.2.d.s.1153.1 2 48.29 odd 4
2304.2.d.s.1153.2 2 48.5 odd 4
2400.2.a.q.1.1 1 40.29 even 2
2400.2.a.r.1.1 1 40.19 odd 2
2400.2.f.a.1249.1 2 40.3 even 4
2400.2.f.a.1249.2 2 40.27 even 4
2400.2.f.r.1249.1 2 40.37 odd 4
2400.2.f.r.1249.2 2 40.13 odd 4
2592.2.i.b.865.1 2 72.67 odd 6
2592.2.i.b.1729.1 2 72.43 odd 6
2592.2.i.h.865.1 2 72.13 even 6
2592.2.i.h.1729.1 2 72.61 even 6
2592.2.i.q.865.1 2 72.59 even 6
2592.2.i.q.1729.1 2 72.11 even 6
2592.2.i.w.865.1 2 72.5 odd 6
2592.2.i.w.1729.1 2 72.29 odd 6
4704.2.a.e.1.1 1 56.13 odd 2
4704.2.a.t.1.1 1 56.27 even 2
4800.2.a.f.1.1 1 20.19 odd 2
4800.2.a.co.1.1 1 5.4 even 2
4800.2.f.e.3649.1 2 5.3 odd 4
4800.2.f.e.3649.2 2 5.2 odd 4
4800.2.f.bh.3649.1 2 20.7 even 4
4800.2.f.bh.3649.2 2 20.3 even 4
7200.2.a.e.1.1 1 120.59 even 2
7200.2.a.bx.1.1 1 120.29 odd 2
7200.2.f.f.6049.1 2 120.77 even 4
7200.2.f.f.6049.2 2 120.53 even 4
7200.2.f.x.6049.1 2 120.83 odd 4
7200.2.f.x.6049.2 2 120.107 odd 4
9408.2.a.bj.1.1 1 28.27 even 2
9408.2.a.ct.1.1 1 7.6 odd 2