Properties

Label 192.2
Level 192
Weight 2
Dimension 410
Nonzero newspaces 8
Newform subspaces 13
Sturm bound 4096
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 13 \)
Sturm bound: \(4096\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(192))\).

Total New Old
Modular forms 1168 454 714
Cusp forms 881 410 471
Eisenstein series 287 44 243

Trace form

\( 410 q - 6 q^{3} - 16 q^{4} - 8 q^{6} - 8 q^{7} - 10 q^{9} - 16 q^{10} + 8 q^{11} - 8 q^{12} - 16 q^{16} + 16 q^{17} - 8 q^{18} + 4 q^{19} - 12 q^{21} - 32 q^{22} - 48 q^{24} - 42 q^{25} - 80 q^{26} - 18 q^{27}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(192))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
192.2.a \(\chi_{192}(1, \cdot)\) 192.2.a.a 1 1
192.2.a.b 1
192.2.a.c 1
192.2.a.d 1
192.2.c \(\chi_{192}(191, \cdot)\) 192.2.c.a 2 1
192.2.c.b 4
192.2.d \(\chi_{192}(97, \cdot)\) 192.2.d.a 4 1
192.2.f \(\chi_{192}(95, \cdot)\) 192.2.f.a 4 1
192.2.f.b 4
192.2.j \(\chi_{192}(49, \cdot)\) 192.2.j.a 8 2
192.2.k \(\chi_{192}(47, \cdot)\) 192.2.k.a 12 2
192.2.n \(\chi_{192}(25, \cdot)\) None 0 4
192.2.o \(\chi_{192}(23, \cdot)\) None 0 4
192.2.r \(\chi_{192}(13, \cdot)\) 192.2.r.a 128 8
192.2.s \(\chi_{192}(11, \cdot)\) 192.2.s.a 240 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(192))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(192)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 1}\)