Properties

Label 1911.4.a.k
Level $1911$
Weight $4$
Character orbit 1911.a
Self dual yes
Analytic conductor $112.753$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(112.752650021\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3144.1
Defining polynomial: \( x^{3} - x^{2} - 16x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} - 3 q^{3} + (\beta_{2} + 3) q^{4} + (2 \beta_{2} - 2) q^{5} + (3 \beta_1 - 3) q^{6} + (2 \beta_{2} + \beta_1 - 3) q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 + 1) q^{2} - 3 q^{3} + (\beta_{2} + 3) q^{4} + (2 \beta_{2} - 2) q^{5} + (3 \beta_1 - 3) q^{6} + (2 \beta_{2} + \beta_1 - 3) q^{8} + 9 q^{9} + (4 \beta_{2} - 6 \beta_1 + 2) q^{10} + (6 \beta_{2} + 2 \beta_1 - 8) q^{11} + ( - 3 \beta_{2} - 9) q^{12} - 13 q^{13} + ( - 6 \beta_{2} + 6) q^{15} + ( - 5 \beta_{2} - 6 \beta_1 - 33) q^{16} + (8 \beta_1 + 46) q^{17} + ( - 9 \beta_1 + 9) q^{18} + ( - 16 \beta_{2} + 6 \beta_1 - 28) q^{19} + ( - 2 \beta_{2} - 12 \beta_1 + 86) q^{20} + (10 \beta_{2} - 18 \beta_1 - 16) q^{22} + ( - 8 \beta_{2} + 32 \beta_1 - 24) q^{23} + ( - 6 \beta_{2} - 3 \beta_1 + 9) q^{24} + ( - 20 \beta_{2} - 24 \beta_1 + 63) q^{25} + (13 \beta_1 - 13) q^{26} - 27 q^{27} + (8 \beta_{2} + 20 \beta_1 - 10) q^{29} + ( - 12 \beta_{2} + 18 \beta_1 - 6) q^{30} + (4 \beta_{2} + 54 \beta_1 - 120) q^{31} + ( - 20 \beta_{2} + 51 \beta_1 + 41) q^{32} + ( - 18 \beta_{2} - 6 \beta_1 + 24) q^{33} + ( - 8 \beta_{2} - 54 \beta_1 - 34) q^{34} + (9 \beta_{2} + 27) q^{36} + ( - 28 \beta_{2} - 48 \beta_1 + 150) q^{37} + ( - 38 \beta_{2} + 86 \beta_1 - 120) q^{38} + 39 q^{39} + ( - 24 \beta_{2} - 18 \beta_1 + 186) q^{40} + ( - 34 \beta_{2} + 4 \beta_1 - 150) q^{41} + (4 \beta_{2} - 60 \beta_1 - 68) q^{43} + ( - 10 \beta_{2} - 22 \beta_1 + 248) q^{44} + (18 \beta_{2} - 18) q^{45} + ( - 48 \beta_{2} + 24 \beta_1 - 360) q^{46} + (42 \beta_{2} - 54 \beta_1 + 12) q^{47} + (15 \beta_{2} + 18 \beta_1 + 99) q^{48} + ( - 16 \beta_{2} + 41 \beta_1 + 263) q^{50} + ( - 24 \beta_1 - 138) q^{51} + ( - 13 \beta_{2} - 39) q^{52} + ( - 12 \beta_{2} - 108 \beta_1 - 186) q^{53} + (27 \beta_1 - 27) q^{54} + ( - 68 \beta_{2} - 60 \beta_1 + 560) q^{55} + (48 \beta_{2} - 18 \beta_1 + 84) q^{57} + ( - 4 \beta_{2} - 42 \beta_1 - 194) q^{58} + ( - 2 \beta_{2} - 82 \beta_1 + 624) q^{59} + (6 \beta_{2} + 36 \beta_1 - 258) q^{60} + (28 \beta_{2} - 24 \beta_1 - 78) q^{61} + ( - 46 \beta_{2} + 50 \beta_1 - 652) q^{62} + ( - 51 \beta_{2} + 36 \beta_1 - 245) q^{64} + ( - 26 \beta_{2} + 26) q^{65} + ( - 30 \beta_{2} + 54 \beta_1 + 48) q^{66} + ( - 76 \beta_{2} + 42 \beta_1 + 36) q^{67} + (38 \beta_{2} + 56 \beta_1 + 122) q^{68} + (24 \beta_{2} - 96 \beta_1 + 72) q^{69} + (14 \beta_{2} - 134 \beta_1 - 276) q^{71} + (18 \beta_{2} + 9 \beta_1 - 27) q^{72} + ( - 12 \beta_{2} + 240 \beta_1 - 2) q^{73} + ( - 8 \beta_{2} + 10 \beta_1 + 574) q^{74} + (60 \beta_{2} + 72 \beta_1 - 189) q^{75} + ( - 34 \beta_{2} + 138 \beta_1 - 832) q^{76} + ( - 39 \beta_1 + 39) q^{78} + ( - 24 \beta_{2} + 48 \beta_1 - 16) q^{79} + ( - 14 \beta_{2} + 24 \beta_1 - 370) q^{80} + 81 q^{81} + ( - 72 \beta_{2} + 282 \beta_1 - 258) q^{82} + (10 \beta_{2} - 30 \beta_1 + 272) q^{83} + (76 \beta_{2} + 48 \beta_1 - 124) q^{85} + (68 \beta_{2} + 112 \beta_1 + 540) q^{86} + ( - 24 \beta_{2} - 60 \beta_1 + 30) q^{87} + ( - 78 \beta_{2} - 42 \beta_1 + 576) q^{88} + ( - 30 \beta_{2} - 116 \beta_1 - 430) q^{89} + (36 \beta_{2} - 54 \beta_1 + 18) q^{90} + ( - 56 \beta_{2} + 272 \beta_1 - 504) q^{92} + ( - 12 \beta_{2} - 162 \beta_1 + 360) q^{93} + (138 \beta_{2} - 126 \beta_1 + 636) q^{94} + (60 \beta_{2} + 228 \beta_1 - 1440) q^{95} + (60 \beta_{2} - 153 \beta_1 - 123) q^{96} + (4 \beta_{2} + 48 \beta_1 - 1098) q^{97} + (54 \beta_{2} + 18 \beta_1 - 72) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} - 9 q^{3} + 10 q^{4} - 4 q^{5} - 6 q^{6} - 6 q^{8} + 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 2 q^{2} - 9 q^{3} + 10 q^{4} - 4 q^{5} - 6 q^{6} - 6 q^{8} + 27 q^{9} + 4 q^{10} - 16 q^{11} - 30 q^{12} - 39 q^{13} + 12 q^{15} - 110 q^{16} + 146 q^{17} + 18 q^{18} - 94 q^{19} + 244 q^{20} - 56 q^{22} - 48 q^{23} + 18 q^{24} + 145 q^{25} - 26 q^{26} - 81 q^{27} - 2 q^{29} - 12 q^{30} - 302 q^{31} + 154 q^{32} + 48 q^{33} - 164 q^{34} + 90 q^{36} + 374 q^{37} - 312 q^{38} + 117 q^{39} + 516 q^{40} - 480 q^{41} - 260 q^{43} + 712 q^{44} - 36 q^{45} - 1104 q^{46} + 24 q^{47} + 330 q^{48} + 814 q^{50} - 438 q^{51} - 130 q^{52} - 678 q^{53} - 54 q^{54} + 1552 q^{55} + 282 q^{57} - 628 q^{58} + 1788 q^{59} - 732 q^{60} - 230 q^{61} - 1952 q^{62} - 750 q^{64} + 52 q^{65} + 168 q^{66} + 74 q^{67} + 460 q^{68} + 144 q^{69} - 948 q^{71} - 54 q^{72} + 222 q^{73} + 1724 q^{74} - 435 q^{75} - 2392 q^{76} + 78 q^{78} - 24 q^{79} - 1100 q^{80} + 243 q^{81} - 564 q^{82} + 796 q^{83} - 248 q^{85} + 1800 q^{86} + 6 q^{87} + 1608 q^{88} - 1436 q^{89} + 36 q^{90} - 1296 q^{92} + 906 q^{93} + 1920 q^{94} - 4032 q^{95} - 462 q^{96} - 3242 q^{97} - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 16x - 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.73549
−0.526440
−3.20905
−3.73549 −3.00000 5.95388 3.90776 11.2065 0 7.64325 9.00000 −14.5974
1.2 1.52644 −3.00000 −5.66998 −19.3400 −4.57932 0 −20.8664 9.00000 −29.5213
1.3 4.20905 −3.00000 9.71610 11.4322 −12.6271 0 7.22315 9.00000 48.1187
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(7\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.4.a.k 3
7.b odd 2 1 39.4.a.c 3
21.c even 2 1 117.4.a.f 3
28.d even 2 1 624.4.a.t 3
35.c odd 2 1 975.4.a.l 3
56.e even 2 1 2496.4.a.bp 3
56.h odd 2 1 2496.4.a.bl 3
84.h odd 2 1 1872.4.a.bk 3
91.b odd 2 1 507.4.a.h 3
91.i even 4 2 507.4.b.g 6
273.g even 2 1 1521.4.a.u 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.a.c 3 7.b odd 2 1
117.4.a.f 3 21.c even 2 1
507.4.a.h 3 91.b odd 2 1
507.4.b.g 6 91.i even 4 2
624.4.a.t 3 28.d even 2 1
975.4.a.l 3 35.c odd 2 1
1521.4.a.u 3 273.g even 2 1
1872.4.a.bk 3 84.h odd 2 1
1911.4.a.k 3 1.a even 1 1 trivial
2496.4.a.bl 3 56.h odd 2 1
2496.4.a.bp 3 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1911))\):

\( T_{2}^{3} - 2T_{2}^{2} - 15T_{2} + 24 \) Copy content Toggle raw display
\( T_{5}^{3} + 4T_{5}^{2} - 252T_{5} + 864 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2 T^{2} - 15 T + 24 \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 4 T^{2} - 252 T + 864 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 16 T^{2} - 2256 T + 30336 \) Copy content Toggle raw display
$13$ \( (T + 13)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 146 T^{2} + 6060 T - 71256 \) Copy content Toggle raw display
$19$ \( T^{3} + 94 T^{2} - 14432 T - 779616 \) Copy content Toggle raw display
$23$ \( T^{3} + 48 T^{2} - 20928 T + 534528 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} - 10116 T - 199176 \) Copy content Toggle raw display
$31$ \( T^{3} + 302 T^{2} - 17536 T - 7197248 \) Copy content Toggle raw display
$37$ \( T^{3} - 374 T^{2} - 36964 T + 7758104 \) Copy content Toggle raw display
$41$ \( T^{3} + 480 T^{2} + \cdots - 12919824 \) Copy content Toggle raw display
$43$ \( T^{3} + 260 T^{2} - 38096 T - 3663168 \) Copy content Toggle raw display
$47$ \( T^{3} - 24 T^{2} - 168480 T - 18102528 \) Copy content Toggle raw display
$53$ \( T^{3} + 678 T^{2} - 42228 T - 1471608 \) Copy content Toggle raw display
$59$ \( T^{3} - 1788 T^{2} + \cdots - 137423808 \) Copy content Toggle raw display
$61$ \( T^{3} + 230 T^{2} - 44452 T - 6279512 \) Copy content Toggle raw display
$67$ \( T^{3} - 74 T^{2} - 409216 T + 4260896 \) Copy content Toggle raw display
$71$ \( T^{3} + 948 T^{2} + \cdots - 70464384 \) Copy content Toggle raw display
$73$ \( T^{3} - 222 T^{2} + \cdots - 22780552 \) Copy content Toggle raw display
$79$ \( T^{3} + 24 T^{2} - 78336 T + 7757824 \) Copy content Toggle raw display
$83$ \( T^{3} - 796 T^{2} + \cdots - 13963968 \) Copy content Toggle raw display
$89$ \( T^{3} + 1436 T^{2} + \cdots + 30129888 \) Copy content Toggle raw display
$97$ \( T^{3} + 3242 T^{2} + \cdots + 1218481048 \) Copy content Toggle raw display
show more
show less