Properties

Label 1911.4.a.j
Level $1911$
Weight $4$
Character orbit 1911.a
Self dual yes
Analytic conductor $112.753$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1911,4,Mod(1,1911)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1911, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1911.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,9,-2,-27] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.752650021\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.4001.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 11x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + 3 q^{3} + (\beta_{2} + \beta_1 - 1) q^{4} + (3 \beta_1 - 9) q^{5} + 3 \beta_1 q^{6} + ( - 5 \beta_1 + 7) q^{8} + 9 q^{9} + (3 \beta_{2} - 6 \beta_1 + 21) q^{10} + (5 \beta_{2} - 8) q^{11}+ \cdots + (45 \beta_{2} - 72) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 2 q^{4} - 27 q^{5} + 21 q^{8} + 27 q^{9} + 66 q^{10} - 19 q^{11} - 6 q^{12} - 39 q^{13} - 81 q^{15} - 94 q^{16} + 25 q^{17} - 169 q^{19} + 81 q^{20} - 5 q^{22} + 28 q^{23} + 63 q^{24} + 66 q^{25}+ \cdots - 171 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 11x - 7 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.93515
−0.662838
3.59799
−2.93515 3.00000 0.615115 −17.8055 −8.80545 0 21.6758 9.00000 52.2617
1.2 −0.662838 3.00000 −7.56065 −10.9885 −1.98851 0 10.3142 9.00000 7.28361
1.3 3.59799 3.00000 4.94553 1.79397 10.7940 0 −10.9899 9.00000 6.45468
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.4.a.j 3
7.b odd 2 1 1911.4.a.i 3
7.c even 3 2 273.4.i.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.4.i.b 6 7.c even 3 2
1911.4.a.i 3 7.b odd 2 1
1911.4.a.j 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1911))\):

\( T_{2}^{3} - 11T_{2} - 7 \) Copy content Toggle raw display
\( T_{5}^{3} + 27T_{5}^{2} + 144T_{5} - 351 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 11T - 7 \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 27 T^{2} + \cdots - 351 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 19 T^{2} + \cdots + 2067 \) Copy content Toggle raw display
$13$ \( (T + 13)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 25 T^{2} + \cdots - 9529 \) Copy content Toggle raw display
$19$ \( T^{3} + 169 T^{2} + \cdots - 56609 \) Copy content Toggle raw display
$23$ \( T^{3} - 28 T^{2} + \cdots + 106197 \) Copy content Toggle raw display
$29$ \( T^{3} - 274 T^{2} + \cdots + 1429589 \) Copy content Toggle raw display
$31$ \( T^{3} - 118 T^{2} + \cdots + 1607109 \) Copy content Toggle raw display
$37$ \( T^{3} - 151 T^{2} + \cdots + 5997719 \) Copy content Toggle raw display
$41$ \( T^{3} + 66 T^{2} + \cdots - 5892039 \) Copy content Toggle raw display
$43$ \( T^{3} - 598 T^{2} + \cdots - 349639 \) Copy content Toggle raw display
$47$ \( T^{3} + 682 T^{2} + \cdots + 10637368 \) Copy content Toggle raw display
$53$ \( T^{3} + 467 T^{2} + \cdots - 4904691 \) Copy content Toggle raw display
$59$ \( T^{3} + 289 T^{2} + \cdots - 15063589 \) Copy content Toggle raw display
$61$ \( T^{3} + 577 T^{2} + \cdots - 30485213 \) Copy content Toggle raw display
$67$ \( T^{3} - 839 T^{2} + \cdots + 5470059 \) Copy content Toggle raw display
$71$ \( T^{3} - 1039 T^{2} + \cdots + 183869749 \) Copy content Toggle raw display
$73$ \( T^{3} + 434 T^{2} + \cdots + 7125809 \) Copy content Toggle raw display
$79$ \( T^{3} + 1260 T^{2} + \cdots + 55941927 \) Copy content Toggle raw display
$83$ \( T^{3} - 836 T^{2} + \cdots - 41702703 \) Copy content Toggle raw display
$89$ \( T^{3} - 787 T^{2} + \cdots + 363386301 \) Copy content Toggle raw display
$97$ \( T^{3} - 267 T^{2} + \cdots + 710857157 \) Copy content Toggle raw display
show more
show less