Properties

Label 1911.2.cq
Level $1911$
Weight $2$
Character orbit 1911.cq
Rep. character $\chi_{1911}(16,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $1572$
Sturm bound $522$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1911.cq (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 637 \)
Character field: \(\Q(\zeta_{21})\)
Sturm bound: \(522\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1911, [\chi])\).

Total New Old
Modular forms 3180 1572 1608
Cusp forms 3084 1572 1512
Eisenstein series 96 0 96

Trace form

\( 1572 q + 3 q^{3} - 264 q^{4} + 131 q^{9} + 8 q^{10} + 4 q^{11} + 8 q^{12} - 2 q^{13} + 16 q^{14} - 284 q^{16} + 8 q^{17} + 3 q^{19} + 8 q^{20} + 5 q^{21} + 2 q^{22} + 156 q^{24} + 133 q^{25} - 74 q^{26}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1911, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1911, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1911, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(637, [\chi])\)\(^{\oplus 2}\)