Properties

Label 1911.2.a.s.1.3
Level $1911$
Weight $2$
Character 1911.1
Self dual yes
Analytic conductor $15.259$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1911,2,Mod(1,1911)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1911, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1911.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.2594118263\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.17428.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.10710\) of defining polynomial
Character \(\chi\) \(=\) 1911.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.43986 q^{2} -1.00000 q^{3} +0.0731828 q^{4} -0.926817 q^{5} -1.43986 q^{6} -2.77434 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.43986 q^{2} -1.00000 q^{3} +0.0731828 q^{4} -0.926817 q^{5} -1.43986 q^{6} -2.77434 q^{8} +1.00000 q^{9} -1.33448 q^{10} +4.21419 q^{11} -0.0731828 q^{12} -1.00000 q^{13} +0.926817 q^{15} -4.14101 q^{16} +2.87971 q^{17} +1.43986 q^{18} +1.28738 q^{19} -0.0678271 q^{20} +6.06783 q^{22} -8.02072 q^{23} +2.77434 q^{24} -4.14101 q^{25} -1.43986 q^{26} -1.00000 q^{27} +3.28738 q^{29} +1.33448 q^{30} +7.04680 q^{31} -0.413779 q^{32} -4.21419 q^{33} +4.14637 q^{34} +0.0731828 q^{36} +8.57475 q^{37} +1.85363 q^{38} +1.00000 q^{39} +2.57130 q^{40} +12.0678 q^{41} +7.14101 q^{43} +0.308407 q^{44} -0.926817 q^{45} -11.5487 q^{46} -1.95289 q^{47} +4.14101 q^{48} -5.96245 q^{50} -2.87971 q^{51} -0.0731828 q^{52} -5.14101 q^{53} -1.43986 q^{54} -3.90579 q^{55} -1.28738 q^{57} +4.73334 q^{58} +7.33448 q^{59} +0.0678271 q^{60} -7.75942 q^{61} +10.1464 q^{62} +7.68624 q^{64} +0.926817 q^{65} -6.06783 q^{66} +12.0414 q^{67} +0.210745 q^{68} +8.02072 q^{69} +10.7889 q^{71} -2.77434 q^{72} +8.32568 q^{73} +12.3464 q^{74} +4.14101 q^{75} +0.0942138 q^{76} +1.43986 q^{78} +4.47204 q^{79} +3.83796 q^{80} +1.00000 q^{81} +17.3759 q^{82} +3.80653 q^{83} -2.66896 q^{85} +10.2820 q^{86} -3.28738 q^{87} -11.6916 q^{88} +5.64793 q^{89} -1.33448 q^{90} -0.586979 q^{92} -7.04680 q^{93} -2.81188 q^{94} -1.19316 q^{95} +0.413779 q^{96} -6.90043 q^{97} +4.21419 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 4 q^{3} + 7 q^{4} + 3 q^{5} - q^{6} + 3 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{2} - 4 q^{3} + 7 q^{4} + 3 q^{5} - q^{6} + 3 q^{8} + 4 q^{9} + 4 q^{10} - 2 q^{11} - 7 q^{12} - 4 q^{13} - 3 q^{15} + 9 q^{16} + 2 q^{17} + q^{18} - 7 q^{19} + 32 q^{20} - 8 q^{22} + 3 q^{23} - 3 q^{24} + 9 q^{25} - q^{26} - 4 q^{27} + q^{29} - 4 q^{30} - 3 q^{31} + 7 q^{32} + 2 q^{33} + 30 q^{34} + 7 q^{36} + 10 q^{37} - 6 q^{38} + 4 q^{39} + 14 q^{40} + 16 q^{41} + 3 q^{43} - 12 q^{44} + 3 q^{45} - 18 q^{46} - 5 q^{47} - 9 q^{48} + 13 q^{50} - 2 q^{51} - 7 q^{52} + 5 q^{53} - q^{54} - 10 q^{55} + 7 q^{57} - 4 q^{58} + 20 q^{59} - 32 q^{60} - 12 q^{61} + 54 q^{62} + 5 q^{64} - 3 q^{65} + 8 q^{66} - 22 q^{67} + 10 q^{68} - 3 q^{69} + 3 q^{72} + 13 q^{73} - 6 q^{74} - 9 q^{75} + 6 q^{76} + q^{78} + 11 q^{79} + 42 q^{80} + 4 q^{81} - 10 q^{82} - q^{83} + 8 q^{85} - 10 q^{86} - q^{87} - 60 q^{88} + 5 q^{89} + 4 q^{90} + 34 q^{92} + 3 q^{93} - 34 q^{94} + 13 q^{95} - 7 q^{96} + 17 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.43986 1.01813 0.509066 0.860728i \(-0.329991\pi\)
0.509066 + 0.860728i \(0.329991\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.0731828 0.0365914
\(5\) −0.926817 −0.414485 −0.207243 0.978290i \(-0.566449\pi\)
−0.207243 + 0.978290i \(0.566449\pi\)
\(6\) −1.43986 −0.587818
\(7\) 0 0
\(8\) −2.77434 −0.980876
\(9\) 1.00000 0.333333
\(10\) −1.33448 −0.422000
\(11\) 4.21419 1.27063 0.635313 0.772254i \(-0.280871\pi\)
0.635313 + 0.772254i \(0.280871\pi\)
\(12\) −0.0731828 −0.0211261
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0.926817 0.239303
\(16\) −4.14101 −1.03525
\(17\) 2.87971 0.698432 0.349216 0.937042i \(-0.386448\pi\)
0.349216 + 0.937042i \(0.386448\pi\)
\(18\) 1.43986 0.339377
\(19\) 1.28738 0.295344 0.147672 0.989036i \(-0.452822\pi\)
0.147672 + 0.989036i \(0.452822\pi\)
\(20\) −0.0678271 −0.0151666
\(21\) 0 0
\(22\) 6.06783 1.29367
\(23\) −8.02072 −1.67244 −0.836218 0.548397i \(-0.815238\pi\)
−0.836218 + 0.548397i \(0.815238\pi\)
\(24\) 2.77434 0.566309
\(25\) −4.14101 −0.828202
\(26\) −1.43986 −0.282379
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 3.28738 0.610450 0.305225 0.952280i \(-0.401268\pi\)
0.305225 + 0.952280i \(0.401268\pi\)
\(30\) 1.33448 0.243642
\(31\) 7.04680 1.26564 0.632821 0.774298i \(-0.281897\pi\)
0.632821 + 0.774298i \(0.281897\pi\)
\(32\) −0.413779 −0.0731465
\(33\) −4.21419 −0.733597
\(34\) 4.14637 0.711096
\(35\) 0 0
\(36\) 0.0731828 0.0121971
\(37\) 8.57475 1.40968 0.704840 0.709366i \(-0.251019\pi\)
0.704840 + 0.709366i \(0.251019\pi\)
\(38\) 1.85363 0.300699
\(39\) 1.00000 0.160128
\(40\) 2.57130 0.406559
\(41\) 12.0678 1.88468 0.942339 0.334660i \(-0.108621\pi\)
0.942339 + 0.334660i \(0.108621\pi\)
\(42\) 0 0
\(43\) 7.14101 1.08899 0.544497 0.838763i \(-0.316721\pi\)
0.544497 + 0.838763i \(0.316721\pi\)
\(44\) 0.308407 0.0464940
\(45\) −0.926817 −0.138162
\(46\) −11.5487 −1.70276
\(47\) −1.95289 −0.284859 −0.142429 0.989805i \(-0.545491\pi\)
−0.142429 + 0.989805i \(0.545491\pi\)
\(48\) 4.14101 0.597703
\(49\) 0 0
\(50\) −5.96245 −0.843218
\(51\) −2.87971 −0.403240
\(52\) −0.0731828 −0.0101486
\(53\) −5.14101 −0.706172 −0.353086 0.935591i \(-0.614868\pi\)
−0.353086 + 0.935591i \(0.614868\pi\)
\(54\) −1.43986 −0.195939
\(55\) −3.90579 −0.526656
\(56\) 0 0
\(57\) −1.28738 −0.170517
\(58\) 4.73334 0.621519
\(59\) 7.33448 0.954868 0.477434 0.878668i \(-0.341567\pi\)
0.477434 + 0.878668i \(0.341567\pi\)
\(60\) 0.0678271 0.00875644
\(61\) −7.75942 −0.993492 −0.496746 0.867896i \(-0.665472\pi\)
−0.496746 + 0.867896i \(0.665472\pi\)
\(62\) 10.1464 1.28859
\(63\) 0 0
\(64\) 7.68624 0.960780
\(65\) 0.926817 0.114958
\(66\) −6.06783 −0.746898
\(67\) 12.0414 1.47110 0.735548 0.677473i \(-0.236925\pi\)
0.735548 + 0.677473i \(0.236925\pi\)
\(68\) 0.210745 0.0255566
\(69\) 8.02072 0.965581
\(70\) 0 0
\(71\) 10.7889 1.28041 0.640206 0.768203i \(-0.278849\pi\)
0.640206 + 0.768203i \(0.278849\pi\)
\(72\) −2.77434 −0.326959
\(73\) 8.32568 0.974447 0.487224 0.873277i \(-0.338010\pi\)
0.487224 + 0.873277i \(0.338010\pi\)
\(74\) 12.3464 1.43524
\(75\) 4.14101 0.478163
\(76\) 0.0942138 0.0108071
\(77\) 0 0
\(78\) 1.43986 0.163031
\(79\) 4.47204 0.503144 0.251572 0.967839i \(-0.419052\pi\)
0.251572 + 0.967839i \(0.419052\pi\)
\(80\) 3.83796 0.429097
\(81\) 1.00000 0.111111
\(82\) 17.3759 1.91885
\(83\) 3.80653 0.417821 0.208910 0.977935i \(-0.433008\pi\)
0.208910 + 0.977935i \(0.433008\pi\)
\(84\) 0 0
\(85\) −2.66896 −0.289490
\(86\) 10.2820 1.10874
\(87\) −3.28738 −0.352444
\(88\) −11.6916 −1.24633
\(89\) 5.64793 0.598680 0.299340 0.954147i \(-0.403234\pi\)
0.299340 + 0.954147i \(0.403234\pi\)
\(90\) −1.33448 −0.140667
\(91\) 0 0
\(92\) −0.586979 −0.0611968
\(93\) −7.04680 −0.730719
\(94\) −2.81188 −0.290024
\(95\) −1.19316 −0.122416
\(96\) 0.413779 0.0422312
\(97\) −6.90043 −0.700633 −0.350316 0.936631i \(-0.613926\pi\)
−0.350316 + 0.936631i \(0.613926\pi\)
\(98\) 0 0
\(99\) 4.21419 0.423542
\(100\) −0.303051 −0.0303051
\(101\) 10.9739 1.09195 0.545973 0.837803i \(-0.316160\pi\)
0.545973 + 0.837803i \(0.316160\pi\)
\(102\) −4.14637 −0.410551
\(103\) −16.4284 −1.61874 −0.809368 0.587301i \(-0.800190\pi\)
−0.809368 + 0.587301i \(0.800190\pi\)
\(104\) 2.77434 0.272046
\(105\) 0 0
\(106\) −7.40231 −0.718976
\(107\) −3.45446 −0.333955 −0.166978 0.985961i \(-0.553401\pi\)
−0.166978 + 0.985961i \(0.553401\pi\)
\(108\) −0.0731828 −0.00704202
\(109\) 4.66896 0.447206 0.223603 0.974680i \(-0.428218\pi\)
0.223603 + 0.974680i \(0.428218\pi\)
\(110\) −5.62377 −0.536205
\(111\) −8.57475 −0.813879
\(112\) 0 0
\(113\) −3.28738 −0.309250 −0.154625 0.987973i \(-0.549417\pi\)
−0.154625 + 0.987973i \(0.549417\pi\)
\(114\) −1.85363 −0.173609
\(115\) 7.43374 0.693200
\(116\) 0.240579 0.0223372
\(117\) −1.00000 −0.0924500
\(118\) 10.5606 0.972181
\(119\) 0 0
\(120\) −2.57130 −0.234727
\(121\) 6.75942 0.614493
\(122\) −11.1724 −1.01151
\(123\) −12.0678 −1.08812
\(124\) 0.515704 0.0463116
\(125\) 8.47204 0.757763
\(126\) 0 0
\(127\) −0.428386 −0.0380131 −0.0190065 0.999819i \(-0.506050\pi\)
−0.0190065 + 0.999819i \(0.506050\pi\)
\(128\) 11.8946 1.05135
\(129\) −7.14101 −0.628731
\(130\) 1.33448 0.117042
\(131\) −14.1878 −1.23959 −0.619797 0.784762i \(-0.712785\pi\)
−0.619797 + 0.784762i \(0.712785\pi\)
\(132\) −0.308407 −0.0268433
\(133\) 0 0
\(134\) 17.3379 1.49777
\(135\) 0.926817 0.0797677
\(136\) −7.98929 −0.685076
\(137\) 14.7070 1.25650 0.628250 0.778011i \(-0.283771\pi\)
0.628250 + 0.778011i \(0.283771\pi\)
\(138\) 11.5487 0.983089
\(139\) −9.85363 −0.835774 −0.417887 0.908499i \(-0.637229\pi\)
−0.417887 + 0.908499i \(0.637229\pi\)
\(140\) 0 0
\(141\) 1.95289 0.164463
\(142\) 15.5345 1.30363
\(143\) −4.21419 −0.352409
\(144\) −4.14101 −0.345084
\(145\) −3.04680 −0.253023
\(146\) 11.9878 0.992115
\(147\) 0 0
\(148\) 0.627525 0.0515822
\(149\) −3.38663 −0.277444 −0.138722 0.990331i \(-0.544299\pi\)
−0.138722 + 0.990331i \(0.544299\pi\)
\(150\) 5.96245 0.486832
\(151\) −21.8951 −1.78180 −0.890898 0.454204i \(-0.849924\pi\)
−0.890898 + 0.454204i \(0.849924\pi\)
\(152\) −3.57161 −0.289696
\(153\) 2.87971 0.232811
\(154\) 0 0
\(155\) −6.53109 −0.524590
\(156\) 0.0731828 0.00585932
\(157\) 0.867482 0.0692326 0.0346163 0.999401i \(-0.488979\pi\)
0.0346163 + 0.999401i \(0.488979\pi\)
\(158\) 6.43910 0.512267
\(159\) 5.14101 0.407709
\(160\) 0.383498 0.0303182
\(161\) 0 0
\(162\) 1.43986 0.113126
\(163\) 4.42839 0.346858 0.173429 0.984846i \(-0.444515\pi\)
0.173429 + 0.984846i \(0.444515\pi\)
\(164\) 0.883158 0.0689630
\(165\) 3.90579 0.304065
\(166\) 5.48085 0.425396
\(167\) −20.5276 −1.58848 −0.794238 0.607606i \(-0.792130\pi\)
−0.794238 + 0.607606i \(0.792130\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −3.84292 −0.294739
\(171\) 1.28738 0.0984481
\(172\) 0.522599 0.0398478
\(173\) −15.0154 −1.14160 −0.570799 0.821090i \(-0.693366\pi\)
−0.570799 + 0.821090i \(0.693366\pi\)
\(174\) −4.73334 −0.358834
\(175\) 0 0
\(176\) −17.4510 −1.31542
\(177\) −7.33448 −0.551293
\(178\) 8.13221 0.609535
\(179\) −5.35176 −0.400009 −0.200004 0.979795i \(-0.564096\pi\)
−0.200004 + 0.979795i \(0.564096\pi\)
\(180\) −0.0678271 −0.00505553
\(181\) −11.4667 −0.852312 −0.426156 0.904650i \(-0.640133\pi\)
−0.426156 + 0.904650i \(0.640133\pi\)
\(182\) 0 0
\(183\) 7.75942 0.573593
\(184\) 22.2522 1.64045
\(185\) −7.94723 −0.584292
\(186\) −10.1464 −0.743968
\(187\) 12.1357 0.887447
\(188\) −0.142918 −0.0104234
\(189\) 0 0
\(190\) −1.71798 −0.124635
\(191\) 20.1756 1.45985 0.729927 0.683525i \(-0.239554\pi\)
0.729927 + 0.683525i \(0.239554\pi\)
\(192\) −7.68624 −0.554706
\(193\) −26.3756 −1.89856 −0.949279 0.314435i \(-0.898185\pi\)
−0.949279 + 0.314435i \(0.898185\pi\)
\(194\) −9.93562 −0.713336
\(195\) −0.926817 −0.0663708
\(196\) 0 0
\(197\) −20.1322 −1.43436 −0.717180 0.696888i \(-0.754568\pi\)
−0.717180 + 0.696888i \(0.754568\pi\)
\(198\) 6.06783 0.431222
\(199\) −1.75942 −0.124722 −0.0623610 0.998054i \(-0.519863\pi\)
−0.0623610 + 0.998054i \(0.519863\pi\)
\(200\) 11.4886 0.812364
\(201\) −12.0414 −0.849338
\(202\) 15.8009 1.11174
\(203\) 0 0
\(204\) −0.210745 −0.0147551
\(205\) −11.1847 −0.781171
\(206\) −23.6545 −1.64809
\(207\) −8.02072 −0.557479
\(208\) 4.14101 0.287127
\(209\) 5.42525 0.375272
\(210\) 0 0
\(211\) 15.5694 1.07184 0.535921 0.844268i \(-0.319965\pi\)
0.535921 + 0.844268i \(0.319965\pi\)
\(212\) −0.376234 −0.0258398
\(213\) −10.7889 −0.739246
\(214\) −4.97392 −0.340010
\(215\) −6.61841 −0.451372
\(216\) 2.77434 0.188770
\(217\) 0 0
\(218\) 6.72263 0.455314
\(219\) −8.32568 −0.562597
\(220\) −0.285836 −0.0192711
\(221\) −2.87971 −0.193710
\(222\) −12.3464 −0.828636
\(223\) 11.5694 0.774744 0.387372 0.921923i \(-0.373383\pi\)
0.387372 + 0.921923i \(0.373383\pi\)
\(224\) 0 0
\(225\) −4.14101 −0.276067
\(226\) −4.73334 −0.314857
\(227\) 11.0418 0.732867 0.366433 0.930444i \(-0.380579\pi\)
0.366433 + 0.930444i \(0.380579\pi\)
\(228\) −0.0942138 −0.00623946
\(229\) 13.7073 0.905802 0.452901 0.891561i \(-0.350389\pi\)
0.452901 + 0.891561i \(0.350389\pi\)
\(230\) 10.7035 0.705769
\(231\) 0 0
\(232\) −9.12029 −0.598776
\(233\) 1.23522 0.0809222 0.0404611 0.999181i \(-0.487117\pi\)
0.0404611 + 0.999181i \(0.487117\pi\)
\(234\) −1.43986 −0.0941263
\(235\) 1.80997 0.118070
\(236\) 0.536758 0.0349400
\(237\) −4.47204 −0.290491
\(238\) 0 0
\(239\) 19.1061 1.23587 0.617936 0.786228i \(-0.287969\pi\)
0.617936 + 0.786228i \(0.287969\pi\)
\(240\) −3.83796 −0.247739
\(241\) 12.0329 0.775110 0.387555 0.921847i \(-0.373320\pi\)
0.387555 + 0.921847i \(0.373320\pi\)
\(242\) 9.73259 0.625634
\(243\) −1.00000 −0.0641500
\(244\) −0.567856 −0.0363533
\(245\) 0 0
\(246\) −17.3759 −1.10785
\(247\) −1.28738 −0.0819137
\(248\) −19.5502 −1.24144
\(249\) −3.80653 −0.241229
\(250\) 12.1985 0.771502
\(251\) 15.0031 0.946990 0.473495 0.880797i \(-0.342992\pi\)
0.473495 + 0.880797i \(0.342992\pi\)
\(252\) 0 0
\(253\) −33.8009 −2.12504
\(254\) −0.616813 −0.0387023
\(255\) 2.66896 0.167137
\(256\) 1.75406 0.109629
\(257\) 13.0261 0.812544 0.406272 0.913752i \(-0.366828\pi\)
0.406272 + 0.913752i \(0.366828\pi\)
\(258\) −10.2820 −0.640131
\(259\) 0 0
\(260\) 0.0678271 0.00420646
\(261\) 3.28738 0.203483
\(262\) −20.4284 −1.26207
\(263\) −2.59547 −0.160044 −0.0800218 0.996793i \(-0.525499\pi\)
−0.0800218 + 0.996793i \(0.525499\pi\)
\(264\) 11.6916 0.719568
\(265\) 4.76478 0.292698
\(266\) 0 0
\(267\) −5.64793 −0.345648
\(268\) 0.881227 0.0538295
\(269\) 23.3081 1.42112 0.710560 0.703637i \(-0.248442\pi\)
0.710560 + 0.703637i \(0.248442\pi\)
\(270\) 1.33448 0.0812140
\(271\) 6.05215 0.367642 0.183821 0.982960i \(-0.441153\pi\)
0.183821 + 0.982960i \(0.441153\pi\)
\(272\) −11.9249 −0.723054
\(273\) 0 0
\(274\) 21.1759 1.27928
\(275\) −17.4510 −1.05234
\(276\) 0.586979 0.0353320
\(277\) 15.1932 0.912869 0.456434 0.889757i \(-0.349126\pi\)
0.456434 + 0.889757i \(0.349126\pi\)
\(278\) −14.1878 −0.850928
\(279\) 7.04680 0.421881
\(280\) 0 0
\(281\) −7.57506 −0.451890 −0.225945 0.974140i \(-0.572547\pi\)
−0.225945 + 0.974140i \(0.572547\pi\)
\(282\) 2.81188 0.167445
\(283\) −19.0974 −1.13522 −0.567610 0.823298i \(-0.692132\pi\)
−0.567610 + 0.823298i \(0.692132\pi\)
\(284\) 0.789565 0.0468521
\(285\) 1.19316 0.0706768
\(286\) −6.06783 −0.358798
\(287\) 0 0
\(288\) −0.413779 −0.0243822
\(289\) −8.70727 −0.512192
\(290\) −4.38695 −0.257610
\(291\) 6.90043 0.404510
\(292\) 0.609297 0.0356564
\(293\) 3.79430 0.221665 0.110833 0.993839i \(-0.464648\pi\)
0.110833 + 0.993839i \(0.464648\pi\)
\(294\) 0 0
\(295\) −6.79772 −0.395779
\(296\) −23.7893 −1.38272
\(297\) −4.21419 −0.244532
\(298\) −4.87626 −0.282474
\(299\) 8.02072 0.463850
\(300\) 0.303051 0.0174966
\(301\) 0 0
\(302\) −31.5257 −1.81410
\(303\) −10.9739 −0.630435
\(304\) −5.33104 −0.305756
\(305\) 7.19156 0.411788
\(306\) 4.14637 0.237032
\(307\) 5.19316 0.296389 0.148195 0.988958i \(-0.452654\pi\)
0.148195 + 0.988958i \(0.452654\pi\)
\(308\) 0 0
\(309\) 16.4284 0.934578
\(310\) −9.40383 −0.534101
\(311\) 13.8536 0.785568 0.392784 0.919631i \(-0.371512\pi\)
0.392784 + 0.919631i \(0.371512\pi\)
\(312\) −2.77434 −0.157066
\(313\) 32.6162 1.84358 0.921788 0.387694i \(-0.126728\pi\)
0.921788 + 0.387694i \(0.126728\pi\)
\(314\) 1.24905 0.0704879
\(315\) 0 0
\(316\) 0.327277 0.0184108
\(317\) 12.0380 0.676121 0.338061 0.941124i \(-0.390229\pi\)
0.338061 + 0.941124i \(0.390229\pi\)
\(318\) 7.40231 0.415101
\(319\) 13.8536 0.775655
\(320\) −7.12374 −0.398229
\(321\) 3.45446 0.192809
\(322\) 0 0
\(323\) 3.70727 0.206278
\(324\) 0.0731828 0.00406571
\(325\) 4.14101 0.229702
\(326\) 6.37623 0.353147
\(327\) −4.66896 −0.258194
\(328\) −33.4802 −1.84864
\(329\) 0 0
\(330\) 5.62377 0.309578
\(331\) −26.2820 −1.44459 −0.722295 0.691585i \(-0.756913\pi\)
−0.722295 + 0.691585i \(0.756913\pi\)
\(332\) 0.278572 0.0152886
\(333\) 8.57475 0.469893
\(334\) −29.5568 −1.61728
\(335\) −11.1602 −0.609748
\(336\) 0 0
\(337\) 26.2905 1.43214 0.716068 0.698031i \(-0.245940\pi\)
0.716068 + 0.698031i \(0.245940\pi\)
\(338\) 1.43986 0.0783178
\(339\) 3.28738 0.178546
\(340\) −0.195322 −0.0105928
\(341\) 29.6966 1.60816
\(342\) 1.85363 0.100233
\(343\) 0 0
\(344\) −19.8116 −1.06817
\(345\) −7.43374 −0.400219
\(346\) −21.6199 −1.16230
\(347\) 16.4928 0.885378 0.442689 0.896675i \(-0.354025\pi\)
0.442689 + 0.896675i \(0.354025\pi\)
\(348\) −0.240579 −0.0128964
\(349\) −14.1793 −0.759001 −0.379501 0.925191i \(-0.623904\pi\)
−0.379501 + 0.925191i \(0.623904\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) −1.74375 −0.0929419
\(353\) 29.8272 1.58754 0.793772 0.608215i \(-0.208114\pi\)
0.793772 + 0.608215i \(0.208114\pi\)
\(354\) −10.5606 −0.561289
\(355\) −9.99938 −0.530712
\(356\) 0.413332 0.0219065
\(357\) 0 0
\(358\) −7.70575 −0.407262
\(359\) 1.34671 0.0710767 0.0355383 0.999368i \(-0.488685\pi\)
0.0355383 + 0.999368i \(0.488685\pi\)
\(360\) 2.57130 0.135520
\(361\) −17.3427 −0.912772
\(362\) −16.5104 −0.867766
\(363\) −6.75942 −0.354778
\(364\) 0 0
\(365\) −7.71638 −0.403894
\(366\) 11.1724 0.583993
\(367\) −36.1771 −1.88843 −0.944214 0.329331i \(-0.893177\pi\)
−0.944214 + 0.329331i \(0.893177\pi\)
\(368\) 33.2139 1.73139
\(369\) 12.0678 0.628226
\(370\) −11.4429 −0.594886
\(371\) 0 0
\(372\) −0.515704 −0.0267380
\(373\) −16.9089 −0.875511 −0.437755 0.899094i \(-0.644226\pi\)
−0.437755 + 0.899094i \(0.644226\pi\)
\(374\) 17.4736 0.903538
\(375\) −8.47204 −0.437495
\(376\) 5.41798 0.279411
\(377\) −3.28738 −0.169308
\(378\) 0 0
\(379\) −11.6131 −0.596523 −0.298261 0.954484i \(-0.596407\pi\)
−0.298261 + 0.954484i \(0.596407\pi\)
\(380\) −0.0873190 −0.00447937
\(381\) 0.428386 0.0219469
\(382\) 29.0499 1.48632
\(383\) −14.6134 −0.746708 −0.373354 0.927689i \(-0.621792\pi\)
−0.373354 + 0.927689i \(0.621792\pi\)
\(384\) −11.8946 −0.606995
\(385\) 0 0
\(386\) −37.9771 −1.93298
\(387\) 7.14101 0.362998
\(388\) −0.504993 −0.0256371
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) −1.33448 −0.0675741
\(391\) −23.0974 −1.16808
\(392\) 0 0
\(393\) 14.1878 0.715680
\(394\) −28.9875 −1.46037
\(395\) −4.14477 −0.208546
\(396\) 0.308407 0.0154980
\(397\) −25.6982 −1.28975 −0.644877 0.764287i \(-0.723091\pi\)
−0.644877 + 0.764287i \(0.723091\pi\)
\(398\) −2.53331 −0.126983
\(399\) 0 0
\(400\) 17.1480 0.857398
\(401\) −19.5637 −0.976966 −0.488483 0.872573i \(-0.662450\pi\)
−0.488483 + 0.872573i \(0.662450\pi\)
\(402\) −17.3379 −0.864737
\(403\) −7.04680 −0.351026
\(404\) 0.803103 0.0399559
\(405\) −0.926817 −0.0460539
\(406\) 0 0
\(407\) 36.1357 1.79118
\(408\) 7.98929 0.395529
\(409\) −3.19316 −0.157892 −0.0789458 0.996879i \(-0.525155\pi\)
−0.0789458 + 0.996879i \(0.525155\pi\)
\(410\) −16.1043 −0.795335
\(411\) −14.7070 −0.725441
\(412\) −1.20228 −0.0592319
\(413\) 0 0
\(414\) −11.5487 −0.567586
\(415\) −3.52796 −0.173181
\(416\) 0.413779 0.0202872
\(417\) 9.85363 0.482535
\(418\) 7.81157 0.382076
\(419\) −30.2292 −1.47680 −0.738398 0.674366i \(-0.764417\pi\)
−0.738398 + 0.674366i \(0.764417\pi\)
\(420\) 0 0
\(421\) 26.9510 1.31351 0.656755 0.754104i \(-0.271928\pi\)
0.656755 + 0.754104i \(0.271928\pi\)
\(422\) 22.4177 1.09128
\(423\) −1.95289 −0.0949529
\(424\) 14.2629 0.692668
\(425\) −11.9249 −0.578443
\(426\) −15.5345 −0.752650
\(427\) 0 0
\(428\) −0.252807 −0.0122199
\(429\) 4.21419 0.203463
\(430\) −9.52955 −0.459556
\(431\) 16.7713 0.807847 0.403923 0.914793i \(-0.367646\pi\)
0.403923 + 0.914793i \(0.367646\pi\)
\(432\) 4.14101 0.199234
\(433\) −25.8530 −1.24242 −0.621208 0.783646i \(-0.713358\pi\)
−0.621208 + 0.783646i \(0.713358\pi\)
\(434\) 0 0
\(435\) 3.04680 0.146083
\(436\) 0.341688 0.0163639
\(437\) −10.3257 −0.493944
\(438\) −11.9878 −0.572798
\(439\) −25.0553 −1.19582 −0.597912 0.801562i \(-0.704003\pi\)
−0.597912 + 0.801562i \(0.704003\pi\)
\(440\) 10.8360 0.516585
\(441\) 0 0
\(442\) −4.14637 −0.197223
\(443\) 4.64762 0.220815 0.110408 0.993886i \(-0.464784\pi\)
0.110408 + 0.993886i \(0.464784\pi\)
\(444\) −0.627525 −0.0297810
\(445\) −5.23460 −0.248144
\(446\) 16.6583 0.788791
\(447\) 3.38663 0.160182
\(448\) 0 0
\(449\) 0.494696 0.0233462 0.0116731 0.999932i \(-0.496284\pi\)
0.0116731 + 0.999932i \(0.496284\pi\)
\(450\) −5.96245 −0.281073
\(451\) 50.8561 2.39472
\(452\) −0.240579 −0.0113159
\(453\) 21.8951 1.02872
\(454\) 15.8985 0.746155
\(455\) 0 0
\(456\) 3.57161 0.167256
\(457\) 26.4698 1.23821 0.619103 0.785310i \(-0.287496\pi\)
0.619103 + 0.785310i \(0.287496\pi\)
\(458\) 19.7365 0.922225
\(459\) −2.87971 −0.134413
\(460\) 0.544022 0.0253652
\(461\) 1.08168 0.0503786 0.0251893 0.999683i \(-0.491981\pi\)
0.0251893 + 0.999683i \(0.491981\pi\)
\(462\) 0 0
\(463\) −32.7098 −1.52015 −0.760076 0.649834i \(-0.774838\pi\)
−0.760076 + 0.649834i \(0.774838\pi\)
\(464\) −13.6131 −0.631970
\(465\) 6.53109 0.302872
\(466\) 1.77854 0.0823894
\(467\) 17.0797 0.790356 0.395178 0.918605i \(-0.370683\pi\)
0.395178 + 0.918605i \(0.370683\pi\)
\(468\) −0.0731828 −0.00338288
\(469\) 0 0
\(470\) 2.60610 0.120211
\(471\) −0.867482 −0.0399715
\(472\) −20.3483 −0.936608
\(473\) 30.0936 1.38370
\(474\) −6.43910 −0.295758
\(475\) −5.33104 −0.244605
\(476\) 0 0
\(477\) −5.14101 −0.235391
\(478\) 27.5101 1.25828
\(479\) 17.1790 0.784929 0.392464 0.919767i \(-0.371623\pi\)
0.392464 + 0.919767i \(0.371623\pi\)
\(480\) −0.383498 −0.0175042
\(481\) −8.57475 −0.390975
\(482\) 17.3257 0.789164
\(483\) 0 0
\(484\) 0.494674 0.0224852
\(485\) 6.39544 0.290402
\(486\) −1.43986 −0.0653132
\(487\) −4.28264 −0.194065 −0.0970325 0.995281i \(-0.530935\pi\)
−0.0970325 + 0.995281i \(0.530935\pi\)
\(488\) 21.5273 0.974493
\(489\) −4.42839 −0.200259
\(490\) 0 0
\(491\) 27.4545 1.23900 0.619501 0.784996i \(-0.287335\pi\)
0.619501 + 0.784996i \(0.287335\pi\)
\(492\) −0.883158 −0.0398158
\(493\) 9.46669 0.426358
\(494\) −1.85363 −0.0833990
\(495\) −3.90579 −0.175552
\(496\) −29.1809 −1.31026
\(497\) 0 0
\(498\) −5.48085 −0.245603
\(499\) −37.0452 −1.65837 −0.829185 0.558974i \(-0.811195\pi\)
−0.829185 + 0.558974i \(0.811195\pi\)
\(500\) 0.620008 0.0277276
\(501\) 20.5276 0.917108
\(502\) 21.6023 0.964160
\(503\) −3.23744 −0.144350 −0.0721752 0.997392i \(-0.522994\pi\)
−0.0721752 + 0.997392i \(0.522994\pi\)
\(504\) 0 0
\(505\) −10.1708 −0.452596
\(506\) −48.6683 −2.16357
\(507\) −1.00000 −0.0444116
\(508\) −0.0313505 −0.00139095
\(509\) 30.4877 1.35134 0.675672 0.737202i \(-0.263853\pi\)
0.675672 + 0.737202i \(0.263853\pi\)
\(510\) 3.84292 0.170167
\(511\) 0 0
\(512\) −21.2637 −0.939730
\(513\) −1.28738 −0.0568390
\(514\) 18.7557 0.827277
\(515\) 15.2261 0.670943
\(516\) −0.522599 −0.0230062
\(517\) −8.22987 −0.361949
\(518\) 0 0
\(519\) 15.0154 0.659101
\(520\) −2.57130 −0.112759
\(521\) 25.3602 1.11105 0.555526 0.831499i \(-0.312517\pi\)
0.555526 + 0.831499i \(0.312517\pi\)
\(522\) 4.73334 0.207173
\(523\) 7.00314 0.306226 0.153113 0.988209i \(-0.451070\pi\)
0.153113 + 0.988209i \(0.451070\pi\)
\(524\) −1.03830 −0.0453585
\(525\) 0 0
\(526\) −3.73710 −0.162945
\(527\) 20.2927 0.883965
\(528\) 17.4510 0.759458
\(529\) 41.3320 1.79704
\(530\) 6.86059 0.298005
\(531\) 7.33448 0.318289
\(532\) 0 0
\(533\) −12.0678 −0.522716
\(534\) −8.13221 −0.351915
\(535\) 3.20165 0.138420
\(536\) −33.4070 −1.44296
\(537\) 5.35176 0.230945
\(538\) 33.5603 1.44689
\(539\) 0 0
\(540\) 0.0678271 0.00291881
\(541\) −1.42463 −0.0612495 −0.0306248 0.999531i \(-0.509750\pi\)
−0.0306248 + 0.999531i \(0.509750\pi\)
\(542\) 8.71422 0.374308
\(543\) 11.4667 0.492083
\(544\) −1.19156 −0.0510879
\(545\) −4.32728 −0.185360
\(546\) 0 0
\(547\) −22.0499 −0.942787 −0.471394 0.881923i \(-0.656249\pi\)
−0.471394 + 0.881923i \(0.656249\pi\)
\(548\) 1.07630 0.0459771
\(549\) −7.75942 −0.331164
\(550\) −25.1269 −1.07142
\(551\) 4.23209 0.180293
\(552\) −22.2522 −0.947116
\(553\) 0 0
\(554\) 21.8760 0.929420
\(555\) 7.94723 0.337341
\(556\) −0.721117 −0.0305822
\(557\) −9.08319 −0.384867 −0.192434 0.981310i \(-0.561638\pi\)
−0.192434 + 0.981310i \(0.561638\pi\)
\(558\) 10.1464 0.429530
\(559\) −7.14101 −0.302033
\(560\) 0 0
\(561\) −12.1357 −0.512368
\(562\) −10.9070 −0.460084
\(563\) −34.1350 −1.43862 −0.719310 0.694689i \(-0.755542\pi\)
−0.719310 + 0.694689i \(0.755542\pi\)
\(564\) 0.142918 0.00601794
\(565\) 3.04680 0.128180
\(566\) −27.4974 −1.15580
\(567\) 0 0
\(568\) −29.9322 −1.25593
\(569\) 1.23522 0.0517833 0.0258916 0.999665i \(-0.491758\pi\)
0.0258916 + 0.999665i \(0.491758\pi\)
\(570\) 1.71798 0.0719583
\(571\) −26.4613 −1.10737 −0.553686 0.832725i \(-0.686779\pi\)
−0.553686 + 0.832725i \(0.686779\pi\)
\(572\) −0.308407 −0.0128951
\(573\) −20.1756 −0.842847
\(574\) 0 0
\(575\) 33.2139 1.38511
\(576\) 7.68624 0.320260
\(577\) 23.2852 0.969374 0.484687 0.874688i \(-0.338934\pi\)
0.484687 + 0.874688i \(0.338934\pi\)
\(578\) −12.5372 −0.521479
\(579\) 26.3756 1.09613
\(580\) −0.222973 −0.00925846
\(581\) 0 0
\(582\) 9.93562 0.411845
\(583\) −21.6652 −0.897281
\(584\) −23.0982 −0.955812
\(585\) 0.926817 0.0383192
\(586\) 5.46324 0.225684
\(587\) 10.7155 0.442274 0.221137 0.975243i \(-0.429023\pi\)
0.221137 + 0.975243i \(0.429023\pi\)
\(588\) 0 0
\(589\) 9.07187 0.373800
\(590\) −9.78774 −0.402955
\(591\) 20.1322 0.828128
\(592\) −35.5081 −1.45938
\(593\) −14.1008 −0.579049 −0.289525 0.957171i \(-0.593497\pi\)
−0.289525 + 0.957171i \(0.593497\pi\)
\(594\) −6.06783 −0.248966
\(595\) 0 0
\(596\) −0.247843 −0.0101521
\(597\) 1.75942 0.0720083
\(598\) 11.5487 0.472260
\(599\) −38.9296 −1.59062 −0.795311 0.606202i \(-0.792692\pi\)
−0.795311 + 0.606202i \(0.792692\pi\)
\(600\) −11.4886 −0.469018
\(601\) 32.6162 1.33044 0.665221 0.746646i \(-0.268337\pi\)
0.665221 + 0.746646i \(0.268337\pi\)
\(602\) 0 0
\(603\) 12.0414 0.490365
\(604\) −1.60234 −0.0651984
\(605\) −6.26475 −0.254698
\(606\) −15.8009 −0.641866
\(607\) −19.3203 −0.784188 −0.392094 0.919925i \(-0.628249\pi\)
−0.392094 + 0.919925i \(0.628249\pi\)
\(608\) −0.532689 −0.0216034
\(609\) 0 0
\(610\) 10.3548 0.419254
\(611\) 1.95289 0.0790056
\(612\) 0.210745 0.00851888
\(613\) 35.3197 1.42655 0.713275 0.700885i \(-0.247211\pi\)
0.713275 + 0.700885i \(0.247211\pi\)
\(614\) 7.47740 0.301763
\(615\) 11.1847 0.451009
\(616\) 0 0
\(617\) −24.4318 −0.983589 −0.491794 0.870711i \(-0.663659\pi\)
−0.491794 + 0.870711i \(0.663659\pi\)
\(618\) 23.6545 0.951523
\(619\) −2.90892 −0.116919 −0.0584597 0.998290i \(-0.518619\pi\)
−0.0584597 + 0.998290i \(0.518619\pi\)
\(620\) −0.477964 −0.0191955
\(621\) 8.02072 0.321860
\(622\) 19.9472 0.799811
\(623\) 0 0
\(624\) −4.14101 −0.165773
\(625\) 12.8530 0.514121
\(626\) 46.9626 1.87700
\(627\) −5.42525 −0.216664
\(628\) 0.0634848 0.00253332
\(629\) 24.6928 0.984566
\(630\) 0 0
\(631\) 5.66521 0.225528 0.112764 0.993622i \(-0.464030\pi\)
0.112764 + 0.993622i \(0.464030\pi\)
\(632\) −12.4070 −0.493522
\(633\) −15.5694 −0.618828
\(634\) 17.3330 0.688380
\(635\) 0.397035 0.0157559
\(636\) 0.376234 0.0149186
\(637\) 0 0
\(638\) 19.9472 0.789718
\(639\) 10.7889 0.426804
\(640\) −11.0241 −0.435768
\(641\) 12.2842 0.485198 0.242599 0.970127i \(-0.422000\pi\)
0.242599 + 0.970127i \(0.422000\pi\)
\(642\) 4.97392 0.196305
\(643\) −9.14950 −0.360821 −0.180411 0.983591i \(-0.557743\pi\)
−0.180411 + 0.983591i \(0.557743\pi\)
\(644\) 0 0
\(645\) 6.61841 0.260600
\(646\) 5.33793 0.210018
\(647\) −38.4108 −1.51008 −0.755042 0.655677i \(-0.772383\pi\)
−0.755042 + 0.655677i \(0.772383\pi\)
\(648\) −2.77434 −0.108986
\(649\) 30.9089 1.21328
\(650\) 5.96245 0.233867
\(651\) 0 0
\(652\) 0.324082 0.0126920
\(653\) 28.4805 1.11453 0.557265 0.830335i \(-0.311851\pi\)
0.557265 + 0.830335i \(0.311851\pi\)
\(654\) −6.72263 −0.262876
\(655\) 13.1495 0.513794
\(656\) −49.9730 −1.95112
\(657\) 8.32568 0.324816
\(658\) 0 0
\(659\) −30.4384 −1.18571 −0.592856 0.805309i \(-0.702000\pi\)
−0.592856 + 0.805309i \(0.702000\pi\)
\(660\) 0.285836 0.0111262
\(661\) −36.7710 −1.43023 −0.715114 0.699008i \(-0.753625\pi\)
−0.715114 + 0.699008i \(0.753625\pi\)
\(662\) −37.8423 −1.47078
\(663\) 2.87971 0.111839
\(664\) −10.5606 −0.409830
\(665\) 0 0
\(666\) 12.3464 0.478413
\(667\) −26.3671 −1.02094
\(668\) −1.50227 −0.0581246
\(669\) −11.5694 −0.447299
\(670\) −16.0691 −0.620803
\(671\) −32.6997 −1.26236
\(672\) 0 0
\(673\) 26.7961 1.03291 0.516457 0.856313i \(-0.327250\pi\)
0.516457 + 0.856313i \(0.327250\pi\)
\(674\) 37.8545 1.45810
\(675\) 4.14101 0.159388
\(676\) 0.0731828 0.00281472
\(677\) 20.3050 0.780383 0.390191 0.920734i \(-0.372409\pi\)
0.390191 + 0.920734i \(0.372409\pi\)
\(678\) 4.73334 0.181783
\(679\) 0 0
\(680\) 7.40461 0.283954
\(681\) −11.0418 −0.423121
\(682\) 42.7587 1.63732
\(683\) 44.9240 1.71897 0.859484 0.511162i \(-0.170785\pi\)
0.859484 + 0.511162i \(0.170785\pi\)
\(684\) 0.0942138 0.00360235
\(685\) −13.6307 −0.520801
\(686\) 0 0
\(687\) −13.7073 −0.522965
\(688\) −29.5710 −1.12738
\(689\) 5.14101 0.195857
\(690\) −10.7035 −0.407476
\(691\) −22.0085 −0.837243 −0.418621 0.908161i \(-0.637487\pi\)
−0.418621 + 0.908161i \(0.637487\pi\)
\(692\) −1.09887 −0.0417726
\(693\) 0 0
\(694\) 23.7472 0.901431
\(695\) 9.13252 0.346416
\(696\) 9.12029 0.345704
\(697\) 34.7518 1.31632
\(698\) −20.4162 −0.772763
\(699\) −1.23522 −0.0467205
\(700\) 0 0
\(701\) 31.4645 1.18840 0.594198 0.804319i \(-0.297469\pi\)
0.594198 + 0.804319i \(0.297469\pi\)
\(702\) 1.43986 0.0543438
\(703\) 11.0389 0.416341
\(704\) 32.3913 1.22079
\(705\) −1.80997 −0.0681676
\(706\) 42.9469 1.61633
\(707\) 0 0
\(708\) −0.536758 −0.0201726
\(709\) −25.3373 −0.951563 −0.475781 0.879564i \(-0.657835\pi\)
−0.475781 + 0.879564i \(0.657835\pi\)
\(710\) −14.3977 −0.540334
\(711\) 4.47204 0.167715
\(712\) −15.6693 −0.587231
\(713\) −56.5204 −2.11670
\(714\) 0 0
\(715\) 3.90579 0.146068
\(716\) −0.391657 −0.0146369
\(717\) −19.1061 −0.713532
\(718\) 1.93907 0.0723654
\(719\) 43.8002 1.63347 0.816737 0.577011i \(-0.195781\pi\)
0.816737 + 0.577011i \(0.195781\pi\)
\(720\) 3.83796 0.143032
\(721\) 0 0
\(722\) −24.9709 −0.929322
\(723\) −12.0329 −0.447510
\(724\) −0.839165 −0.0311873
\(725\) −13.6131 −0.505576
\(726\) −9.73259 −0.361210
\(727\) −0.944090 −0.0350144 −0.0175072 0.999847i \(-0.505573\pi\)
−0.0175072 + 0.999847i \(0.505573\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −11.1105 −0.411217
\(731\) 20.5640 0.760588
\(732\) 0.567856 0.0209886
\(733\) 5.09957 0.188357 0.0941784 0.995555i \(-0.469978\pi\)
0.0941784 + 0.995555i \(0.469978\pi\)
\(734\) −52.0898 −1.92267
\(735\) 0 0
\(736\) 3.31881 0.122333
\(737\) 50.7450 1.86921
\(738\) 17.3759 0.639617
\(739\) −8.25129 −0.303529 −0.151764 0.988417i \(-0.548495\pi\)
−0.151764 + 0.988417i \(0.548495\pi\)
\(740\) −0.581601 −0.0213801
\(741\) 1.28738 0.0472929
\(742\) 0 0
\(743\) 38.4962 1.41229 0.706145 0.708068i \(-0.250433\pi\)
0.706145 + 0.708068i \(0.250433\pi\)
\(744\) 19.5502 0.716745
\(745\) 3.13879 0.114996
\(746\) −24.3464 −0.891385
\(747\) 3.80653 0.139274
\(748\) 0.888121 0.0324729
\(749\) 0 0
\(750\) −12.1985 −0.445427
\(751\) −41.3175 −1.50770 −0.753848 0.657049i \(-0.771805\pi\)
−0.753848 + 0.657049i \(0.771805\pi\)
\(752\) 8.08695 0.294901
\(753\) −15.0031 −0.546745
\(754\) −4.73334 −0.172378
\(755\) 20.2927 0.738528
\(756\) 0 0
\(757\) −39.7158 −1.44349 −0.721747 0.692157i \(-0.756661\pi\)
−0.721747 + 0.692157i \(0.756661\pi\)
\(758\) −16.7211 −0.607338
\(759\) 33.8009 1.22689
\(760\) 3.31023 0.120075
\(761\) −10.7390 −0.389289 −0.194644 0.980874i \(-0.562355\pi\)
−0.194644 + 0.980874i \(0.562355\pi\)
\(762\) 0.616813 0.0223448
\(763\) 0 0
\(764\) 1.47651 0.0534181
\(765\) −2.66896 −0.0964966
\(766\) −21.0411 −0.760247
\(767\) −7.33448 −0.264833
\(768\) −1.75406 −0.0632944
\(769\) 50.5549 1.82306 0.911529 0.411237i \(-0.134903\pi\)
0.911529 + 0.411237i \(0.134903\pi\)
\(770\) 0 0
\(771\) −13.0261 −0.469123
\(772\) −1.93024 −0.0694709
\(773\) −8.91770 −0.320747 −0.160374 0.987056i \(-0.551270\pi\)
−0.160374 + 0.987056i \(0.551270\pi\)
\(774\) 10.2820 0.369580
\(775\) −29.1809 −1.04821
\(776\) 19.1441 0.687234
\(777\) 0 0
\(778\) 8.63913 0.309728
\(779\) 15.5358 0.556629
\(780\) −0.0678271 −0.00242860
\(781\) 45.4667 1.62693
\(782\) −33.2568 −1.18926
\(783\) −3.28738 −0.117481
\(784\) 0 0
\(785\) −0.803998 −0.0286959
\(786\) 20.4284 0.728656
\(787\) −22.3671 −0.797302 −0.398651 0.917103i \(-0.630521\pi\)
−0.398651 + 0.917103i \(0.630521\pi\)
\(788\) −1.47333 −0.0524853
\(789\) 2.59547 0.0924012
\(790\) −5.96787 −0.212327
\(791\) 0 0
\(792\) −11.6916 −0.415443
\(793\) 7.75942 0.275545
\(794\) −37.0016 −1.31314
\(795\) −4.76478 −0.168989
\(796\) −0.128759 −0.00456375
\(797\) −20.5518 −0.727983 −0.363991 0.931402i \(-0.618586\pi\)
−0.363991 + 0.931402i \(0.618586\pi\)
\(798\) 0 0
\(799\) −5.62377 −0.198955
\(800\) 1.71346 0.0605801
\(801\) 5.64793 0.199560
\(802\) −28.1689 −0.994680
\(803\) 35.0860 1.23816
\(804\) −0.881227 −0.0310785
\(805\) 0 0
\(806\) −10.1464 −0.357390
\(807\) −23.3081 −0.820484
\(808\) −30.4454 −1.07106
\(809\) 7.83443 0.275444 0.137722 0.990471i \(-0.456022\pi\)
0.137722 + 0.990471i \(0.456022\pi\)
\(810\) −1.33448 −0.0468889
\(811\) 47.5502 1.66971 0.834857 0.550468i \(-0.185551\pi\)
0.834857 + 0.550468i \(0.185551\pi\)
\(812\) 0 0
\(813\) −6.05215 −0.212258
\(814\) 52.0301 1.82365
\(815\) −4.10430 −0.143767
\(816\) 11.9249 0.417455
\(817\) 9.19316 0.321628
\(818\) −4.59769 −0.160754
\(819\) 0 0
\(820\) −0.818526 −0.0285842
\(821\) 4.42494 0.154431 0.0772157 0.997014i \(-0.475397\pi\)
0.0772157 + 0.997014i \(0.475397\pi\)
\(822\) −21.1759 −0.738594
\(823\) −28.7525 −1.00225 −0.501124 0.865375i \(-0.667080\pi\)
−0.501124 + 0.865375i \(0.667080\pi\)
\(824\) 45.5779 1.58778
\(825\) 17.4510 0.607566
\(826\) 0 0
\(827\) −5.58667 −0.194267 −0.0971337 0.995271i \(-0.530967\pi\)
−0.0971337 + 0.995271i \(0.530967\pi\)
\(828\) −0.586979 −0.0203989
\(829\) −53.4974 −1.85804 −0.929021 0.370027i \(-0.879348\pi\)
−0.929021 + 0.370027i \(0.879348\pi\)
\(830\) −5.07974 −0.176320
\(831\) −15.1932 −0.527045
\(832\) −7.68624 −0.266472
\(833\) 0 0
\(834\) 14.1878 0.491284
\(835\) 19.0254 0.658400
\(836\) 0.397035 0.0137317
\(837\) −7.04680 −0.243573
\(838\) −43.5257 −1.50357
\(839\) 43.0405 1.48592 0.742962 0.669334i \(-0.233420\pi\)
0.742962 + 0.669334i \(0.233420\pi\)
\(840\) 0 0
\(841\) −18.1932 −0.627350
\(842\) 38.8055 1.33733
\(843\) 7.57506 0.260899
\(844\) 1.13941 0.0392202
\(845\) −0.926817 −0.0318835
\(846\) −2.81188 −0.0966745
\(847\) 0 0
\(848\) 21.2890 0.731066
\(849\) 19.0974 0.655419
\(850\) −17.1701 −0.588931
\(851\) −68.7757 −2.35760
\(852\) −0.789565 −0.0270501
\(853\) 30.7434 1.05263 0.526316 0.850289i \(-0.323573\pi\)
0.526316 + 0.850289i \(0.323573\pi\)
\(854\) 0 0
\(855\) −1.19316 −0.0408053
\(856\) 9.58384 0.327569
\(857\) 24.5449 0.838438 0.419219 0.907885i \(-0.362304\pi\)
0.419219 + 0.907885i \(0.362304\pi\)
\(858\) 6.06783 0.207152
\(859\) 52.1243 1.77846 0.889229 0.457461i \(-0.151241\pi\)
0.889229 + 0.457461i \(0.151241\pi\)
\(860\) −0.484354 −0.0165163
\(861\) 0 0
\(862\) 24.1483 0.822494
\(863\) 22.2563 0.757612 0.378806 0.925476i \(-0.376335\pi\)
0.378806 + 0.925476i \(0.376335\pi\)
\(864\) 0.413779 0.0140771
\(865\) 13.9165 0.473175
\(866\) −37.2246 −1.26494
\(867\) 8.70727 0.295714
\(868\) 0 0
\(869\) 18.8461 0.639309
\(870\) 4.38695 0.148731
\(871\) −12.0414 −0.408009
\(872\) −12.9533 −0.438654
\(873\) −6.90043 −0.233544
\(874\) −14.8675 −0.502900
\(875\) 0 0
\(876\) −0.609297 −0.0205862
\(877\) 41.0547 1.38632 0.693159 0.720785i \(-0.256218\pi\)
0.693159 + 0.720785i \(0.256218\pi\)
\(878\) −36.0760 −1.21751
\(879\) −3.79430 −0.127979
\(880\) 16.1739 0.545222
\(881\) 31.0568 1.04633 0.523165 0.852231i \(-0.324751\pi\)
0.523165 + 0.852231i \(0.324751\pi\)
\(882\) 0 0
\(883\) −56.5357 −1.90258 −0.951289 0.308300i \(-0.900240\pi\)
−0.951289 + 0.308300i \(0.900240\pi\)
\(884\) −0.210745 −0.00708813
\(885\) 6.79772 0.228503
\(886\) 6.69190 0.224819
\(887\) −9.94785 −0.334016 −0.167008 0.985956i \(-0.553411\pi\)
−0.167008 + 0.985956i \(0.553411\pi\)
\(888\) 23.7893 0.798315
\(889\) 0 0
\(890\) −7.53707 −0.252643
\(891\) 4.21419 0.141181
\(892\) 0.846681 0.0283490
\(893\) −2.51411 −0.0841314
\(894\) 4.87626 0.163087
\(895\) 4.96010 0.165798
\(896\) 0 0
\(897\) −8.02072 −0.267804
\(898\) 0.712291 0.0237695
\(899\) 23.1655 0.772612
\(900\) −0.303051 −0.0101017
\(901\) −14.8046 −0.493213
\(902\) 73.2255 2.43814
\(903\) 0 0
\(904\) 9.12029 0.303336
\(905\) 10.6275 0.353271
\(906\) 31.5257 1.04737
\(907\) −31.2936 −1.03909 −0.519544 0.854444i \(-0.673898\pi\)
−0.519544 + 0.854444i \(0.673898\pi\)
\(908\) 0.808067 0.0268166
\(909\) 10.9739 0.363982
\(910\) 0 0
\(911\) −9.39320 −0.311210 −0.155605 0.987819i \(-0.549733\pi\)
−0.155605 + 0.987819i \(0.549733\pi\)
\(912\) 5.33104 0.176528
\(913\) 16.0414 0.530894
\(914\) 38.1127 1.26066
\(915\) −7.19156 −0.237746
\(916\) 1.00314 0.0331446
\(917\) 0 0
\(918\) −4.14637 −0.136850
\(919\) 21.7066 0.716036 0.358018 0.933715i \(-0.383453\pi\)
0.358018 + 0.933715i \(0.383453\pi\)
\(920\) −20.6237 −0.679944
\(921\) −5.19316 −0.171120
\(922\) 1.55746 0.0512921
\(923\) −10.7889 −0.355122
\(924\) 0 0
\(925\) −35.5081 −1.16750
\(926\) −47.0974 −1.54771
\(927\) −16.4284 −0.539579
\(928\) −1.36025 −0.0446523
\(929\) −35.6787 −1.17058 −0.585289 0.810824i \(-0.699019\pi\)
−0.585289 + 0.810824i \(0.699019\pi\)
\(930\) 9.40383 0.308364
\(931\) 0 0
\(932\) 0.0903972 0.00296106
\(933\) −13.8536 −0.453548
\(934\) 24.5924 0.804687
\(935\) −11.2475 −0.367834
\(936\) 2.77434 0.0906821
\(937\) 47.0866 1.53825 0.769127 0.639096i \(-0.220691\pi\)
0.769127 + 0.639096i \(0.220691\pi\)
\(938\) 0 0
\(939\) −32.6162 −1.06439
\(940\) 0.132459 0.00432034
\(941\) −45.2923 −1.47649 −0.738244 0.674534i \(-0.764345\pi\)
−0.738244 + 0.674534i \(0.764345\pi\)
\(942\) −1.24905 −0.0406962
\(943\) −96.7927 −3.15200
\(944\) −30.3722 −0.988530
\(945\) 0 0
\(946\) 43.3304 1.40879
\(947\) 4.77134 0.155048 0.0775238 0.996991i \(-0.475299\pi\)
0.0775238 + 0.996991i \(0.475299\pi\)
\(948\) −0.327277 −0.0106295
\(949\) −8.32568 −0.270263
\(950\) −7.67592 −0.249040
\(951\) −12.0380 −0.390359
\(952\) 0 0
\(953\) −3.95572 −0.128138 −0.0640692 0.997945i \(-0.520408\pi\)
−0.0640692 + 0.997945i \(0.520408\pi\)
\(954\) −7.40231 −0.239659
\(955\) −18.6991 −0.605088
\(956\) 1.39824 0.0452223
\(957\) −13.8536 −0.447824
\(958\) 24.7353 0.799160
\(959\) 0 0
\(960\) 7.12374 0.229918
\(961\) 18.6573 0.601850
\(962\) −12.3464 −0.398064
\(963\) −3.45446 −0.111318
\(964\) 0.880605 0.0283624
\(965\) 24.4454 0.786924
\(966\) 0 0
\(967\) 50.2292 1.61526 0.807632 0.589687i \(-0.200749\pi\)
0.807632 + 0.589687i \(0.200749\pi\)
\(968\) −18.7529 −0.602742
\(969\) −3.70727 −0.119095
\(970\) 9.20850 0.295667
\(971\) −38.6576 −1.24058 −0.620291 0.784372i \(-0.712986\pi\)
−0.620291 + 0.784372i \(0.712986\pi\)
\(972\) −0.0731828 −0.00234734
\(973\) 0 0
\(974\) −6.16638 −0.197584
\(975\) −4.14101 −0.132618
\(976\) 32.1318 1.02852
\(977\) −20.6134 −0.659480 −0.329740 0.944072i \(-0.606961\pi\)
−0.329740 + 0.944072i \(0.606961\pi\)
\(978\) −6.37623 −0.203889
\(979\) 23.8015 0.760699
\(980\) 0 0
\(981\) 4.66896 0.149069
\(982\) 39.5304 1.26147
\(983\) 4.48620 0.143088 0.0715438 0.997437i \(-0.477207\pi\)
0.0715438 + 0.997437i \(0.477207\pi\)
\(984\) 33.4802 1.06731
\(985\) 18.6589 0.594521
\(986\) 13.6307 0.434089
\(987\) 0 0
\(988\) −0.0942138 −0.00299734
\(989\) −57.2760 −1.82127
\(990\) −5.62377 −0.178735
\(991\) −32.7971 −1.04183 −0.520917 0.853607i \(-0.674410\pi\)
−0.520917 + 0.853607i \(0.674410\pi\)
\(992\) −2.91582 −0.0925773
\(993\) 26.2820 0.834035
\(994\) 0 0
\(995\) 1.63066 0.0516954
\(996\) −0.278572 −0.00882691
\(997\) −0.491870 −0.0155777 −0.00778884 0.999970i \(-0.502479\pi\)
−0.00778884 + 0.999970i \(0.502479\pi\)
\(998\) −53.3397 −1.68844
\(999\) −8.57475 −0.271293
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1911.2.a.s.1.3 4
3.2 odd 2 5733.2.a.bf.1.2 4
7.6 odd 2 273.2.a.e.1.3 4
21.20 even 2 819.2.a.k.1.2 4
28.27 even 2 4368.2.a.br.1.3 4
35.34 odd 2 6825.2.a.bg.1.2 4
91.90 odd 2 3549.2.a.w.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.a.e.1.3 4 7.6 odd 2
819.2.a.k.1.2 4 21.20 even 2
1911.2.a.s.1.3 4 1.1 even 1 trivial
3549.2.a.w.1.2 4 91.90 odd 2
4368.2.a.br.1.3 4 28.27 even 2
5733.2.a.bf.1.2 4 3.2 odd 2
6825.2.a.bg.1.2 4 35.34 odd 2