Properties

Label 1911.2.a.s.1.1
Level $1911$
Weight $2$
Character 1911.1
Self dual yes
Analytic conductor $15.259$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1911,2,Mod(1,1911)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1911, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1911.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.2594118263\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.17428.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.787711\) of defining polynomial
Character \(\chi\) \(=\) 1911.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.37951 q^{2} -1.00000 q^{3} +3.66208 q^{4} +2.66208 q^{5} +2.37951 q^{6} -3.95493 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-2.37951 q^{2} -1.00000 q^{3} +3.66208 q^{4} +2.66208 q^{5} +2.37951 q^{6} -3.95493 q^{8} +1.00000 q^{9} -6.33445 q^{10} +1.57542 q^{11} -3.66208 q^{12} -1.00000 q^{13} -2.66208 q^{15} +2.08666 q^{16} -4.75902 q^{17} -2.37951 q^{18} +2.23750 q^{19} +9.74873 q^{20} -3.74873 q^{22} +5.84568 q^{23} +3.95493 q^{24} +2.08666 q^{25} +2.37951 q^{26} -1.00000 q^{27} +4.23750 q^{29} +6.33445 q^{30} -7.28055 q^{31} +2.94464 q^{32} -1.57542 q^{33} +11.3242 q^{34} +3.66208 q^{36} +10.4750 q^{37} -5.32415 q^{38} +1.00000 q^{39} -10.5283 q^{40} +2.25127 q^{41} +0.913344 q^{43} +5.76931 q^{44} +2.66208 q^{45} -13.9099 q^{46} +2.09695 q^{47} -2.08666 q^{48} -4.96522 q^{50} +4.75902 q^{51} -3.66208 q^{52} +1.08666 q^{53} +2.37951 q^{54} +4.19389 q^{55} -2.23750 q^{57} -10.0832 q^{58} +12.3344 q^{59} -9.74873 q^{60} +7.51805 q^{61} +17.3242 q^{62} -11.1801 q^{64} -2.66208 q^{65} +3.74873 q^{66} -15.6914 q^{67} -17.4279 q^{68} -5.84568 q^{69} +10.0504 q^{71} -3.95493 q^{72} -15.0797 q^{73} -24.9254 q^{74} -2.08666 q^{75} +8.19389 q^{76} -2.37951 q^{78} -11.7555 q^{79} +5.55484 q^{80} +1.00000 q^{81} -5.35692 q^{82} -7.42110 q^{83} -12.6689 q^{85} -2.17331 q^{86} -4.23750 q^{87} -6.23069 q^{88} +11.1371 q^{89} -6.33445 q^{90} +21.4073 q^{92} +7.28055 q^{93} -4.98971 q^{94} +5.95639 q^{95} -2.94464 q^{96} +14.6047 q^{97} +1.57542 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 4 q^{3} + 7 q^{4} + 3 q^{5} - q^{6} + 3 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{2} - 4 q^{3} + 7 q^{4} + 3 q^{5} - q^{6} + 3 q^{8} + 4 q^{9} + 4 q^{10} - 2 q^{11} - 7 q^{12} - 4 q^{13} - 3 q^{15} + 9 q^{16} + 2 q^{17} + q^{18} - 7 q^{19} + 32 q^{20} - 8 q^{22} + 3 q^{23} - 3 q^{24} + 9 q^{25} - q^{26} - 4 q^{27} + q^{29} - 4 q^{30} - 3 q^{31} + 7 q^{32} + 2 q^{33} + 30 q^{34} + 7 q^{36} + 10 q^{37} - 6 q^{38} + 4 q^{39} + 14 q^{40} + 16 q^{41} + 3 q^{43} - 12 q^{44} + 3 q^{45} - 18 q^{46} - 5 q^{47} - 9 q^{48} + 13 q^{50} - 2 q^{51} - 7 q^{52} + 5 q^{53} - q^{54} - 10 q^{55} + 7 q^{57} - 4 q^{58} + 20 q^{59} - 32 q^{60} - 12 q^{61} + 54 q^{62} + 5 q^{64} - 3 q^{65} + 8 q^{66} - 22 q^{67} + 10 q^{68} - 3 q^{69} + 3 q^{72} + 13 q^{73} - 6 q^{74} - 9 q^{75} + 6 q^{76} + q^{78} + 11 q^{79} + 42 q^{80} + 4 q^{81} - 10 q^{82} - q^{83} + 8 q^{85} - 10 q^{86} - q^{87} - 60 q^{88} + 5 q^{89} + 4 q^{90} + 34 q^{92} + 3 q^{93} - 34 q^{94} + 13 q^{95} - 7 q^{96} + 17 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.37951 −1.68257 −0.841285 0.540593i \(-0.818200\pi\)
−0.841285 + 0.540593i \(0.818200\pi\)
\(3\) −1.00000 −0.577350
\(4\) 3.66208 1.83104
\(5\) 2.66208 1.19052 0.595259 0.803534i \(-0.297050\pi\)
0.595259 + 0.803534i \(0.297050\pi\)
\(6\) 2.37951 0.971432
\(7\) 0 0
\(8\) −3.95493 −1.39828
\(9\) 1.00000 0.333333
\(10\) −6.33445 −2.00313
\(11\) 1.57542 0.475007 0.237504 0.971387i \(-0.423671\pi\)
0.237504 + 0.971387i \(0.423671\pi\)
\(12\) −3.66208 −1.05715
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −2.66208 −0.687345
\(16\) 2.08666 0.521664
\(17\) −4.75902 −1.15423 −0.577116 0.816662i \(-0.695822\pi\)
−0.577116 + 0.816662i \(0.695822\pi\)
\(18\) −2.37951 −0.560856
\(19\) 2.23750 0.513317 0.256659 0.966502i \(-0.417378\pi\)
0.256659 + 0.966502i \(0.417378\pi\)
\(20\) 9.74873 2.17988
\(21\) 0 0
\(22\) −3.74873 −0.799233
\(23\) 5.84568 1.21891 0.609454 0.792821i \(-0.291389\pi\)
0.609454 + 0.792821i \(0.291389\pi\)
\(24\) 3.95493 0.807297
\(25\) 2.08666 0.417331
\(26\) 2.37951 0.466661
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 4.23750 0.786884 0.393442 0.919349i \(-0.371284\pi\)
0.393442 + 0.919349i \(0.371284\pi\)
\(30\) 6.33445 1.15651
\(31\) −7.28055 −1.30763 −0.653813 0.756656i \(-0.726832\pi\)
−0.653813 + 0.756656i \(0.726832\pi\)
\(32\) 2.94464 0.520544
\(33\) −1.57542 −0.274246
\(34\) 11.3242 1.94208
\(35\) 0 0
\(36\) 3.66208 0.610346
\(37\) 10.4750 1.72208 0.861039 0.508538i \(-0.169814\pi\)
0.861039 + 0.508538i \(0.169814\pi\)
\(38\) −5.32415 −0.863692
\(39\) 1.00000 0.160128
\(40\) −10.5283 −1.66468
\(41\) 2.25127 0.351589 0.175794 0.984427i \(-0.443751\pi\)
0.175794 + 0.984427i \(0.443751\pi\)
\(42\) 0 0
\(43\) 0.913344 0.139284 0.0696418 0.997572i \(-0.477814\pi\)
0.0696418 + 0.997572i \(0.477814\pi\)
\(44\) 5.76931 0.869757
\(45\) 2.66208 0.396839
\(46\) −13.9099 −2.05090
\(47\) 2.09695 0.305871 0.152936 0.988236i \(-0.451127\pi\)
0.152936 + 0.988236i \(0.451127\pi\)
\(48\) −2.08666 −0.301183
\(49\) 0 0
\(50\) −4.96522 −0.702189
\(51\) 4.75902 0.666397
\(52\) −3.66208 −0.507839
\(53\) 1.08666 0.149264 0.0746319 0.997211i \(-0.476222\pi\)
0.0746319 + 0.997211i \(0.476222\pi\)
\(54\) 2.37951 0.323811
\(55\) 4.19389 0.565504
\(56\) 0 0
\(57\) −2.23750 −0.296364
\(58\) −10.0832 −1.32399
\(59\) 12.3344 1.60581 0.802904 0.596108i \(-0.203287\pi\)
0.802904 + 0.596108i \(0.203287\pi\)
\(60\) −9.74873 −1.25856
\(61\) 7.51805 0.962587 0.481294 0.876559i \(-0.340167\pi\)
0.481294 + 0.876559i \(0.340167\pi\)
\(62\) 17.3242 2.20017
\(63\) 0 0
\(64\) −11.1801 −1.39752
\(65\) −2.66208 −0.330190
\(66\) 3.74873 0.461437
\(67\) −15.6914 −1.91700 −0.958502 0.285084i \(-0.907978\pi\)
−0.958502 + 0.285084i \(0.907978\pi\)
\(68\) −17.4279 −2.11345
\(69\) −5.84568 −0.703737
\(70\) 0 0
\(71\) 10.0504 1.19277 0.596383 0.802700i \(-0.296604\pi\)
0.596383 + 0.802700i \(0.296604\pi\)
\(72\) −3.95493 −0.466093
\(73\) −15.0797 −1.76495 −0.882473 0.470363i \(-0.844123\pi\)
−0.882473 + 0.470363i \(0.844123\pi\)
\(74\) −24.9254 −2.89752
\(75\) −2.08666 −0.240946
\(76\) 8.19389 0.939904
\(77\) 0 0
\(78\) −2.37951 −0.269427
\(79\) −11.7555 −1.32260 −0.661301 0.750121i \(-0.729995\pi\)
−0.661301 + 0.750121i \(0.729995\pi\)
\(80\) 5.55484 0.621050
\(81\) 1.00000 0.111111
\(82\) −5.35692 −0.591572
\(83\) −7.42110 −0.814572 −0.407286 0.913301i \(-0.633525\pi\)
−0.407286 + 0.913301i \(0.633525\pi\)
\(84\) 0 0
\(85\) −12.6689 −1.37413
\(86\) −2.17331 −0.234354
\(87\) −4.23750 −0.454308
\(88\) −6.23069 −0.664193
\(89\) 11.1371 1.18053 0.590264 0.807210i \(-0.299024\pi\)
0.590264 + 0.807210i \(0.299024\pi\)
\(90\) −6.33445 −0.667709
\(91\) 0 0
\(92\) 21.4073 2.23187
\(93\) 7.28055 0.754958
\(94\) −4.98971 −0.514649
\(95\) 5.95639 0.611113
\(96\) −2.94464 −0.300536
\(97\) 14.6047 1.48288 0.741442 0.671017i \(-0.234142\pi\)
0.741442 + 0.671017i \(0.234142\pi\)
\(98\) 0 0
\(99\) 1.57542 0.158336
\(100\) 7.64150 0.764150
\(101\) 11.4349 1.13781 0.568906 0.822403i \(-0.307367\pi\)
0.568906 + 0.822403i \(0.307367\pi\)
\(102\) −11.3242 −1.12126
\(103\) −11.1508 −1.09873 −0.549363 0.835584i \(-0.685129\pi\)
−0.549363 + 0.835584i \(0.685129\pi\)
\(104\) 3.95493 0.387813
\(105\) 0 0
\(106\) −2.58571 −0.251147
\(107\) 2.28403 0.220805 0.110403 0.993887i \(-0.464786\pi\)
0.110403 + 0.993887i \(0.464786\pi\)
\(108\) −3.66208 −0.352384
\(109\) 14.6689 1.40502 0.702512 0.711671i \(-0.252062\pi\)
0.702512 + 0.711671i \(0.252062\pi\)
\(110\) −9.97942 −0.951500
\(111\) −10.4750 −0.994243
\(112\) 0 0
\(113\) −4.23750 −0.398630 −0.199315 0.979935i \(-0.563872\pi\)
−0.199315 + 0.979935i \(0.563872\pi\)
\(114\) 5.32415 0.498653
\(115\) 15.5617 1.45113
\(116\) 15.5180 1.44081
\(117\) −1.00000 −0.0924500
\(118\) −29.3500 −2.70188
\(119\) 0 0
\(120\) 10.5283 0.961101
\(121\) −8.51805 −0.774368
\(122\) −17.8893 −1.61962
\(123\) −2.25127 −0.202990
\(124\) −26.6619 −2.39431
\(125\) −7.75555 −0.693677
\(126\) 0 0
\(127\) 4.84916 0.430293 0.215147 0.976582i \(-0.430977\pi\)
0.215147 + 0.976582i \(0.430977\pi\)
\(128\) 20.7140 1.83087
\(129\) −0.913344 −0.0804154
\(130\) 6.33445 0.555568
\(131\) 6.36721 0.556305 0.278153 0.960537i \(-0.410278\pi\)
0.278153 + 0.960537i \(0.410278\pi\)
\(132\) −5.76931 −0.502154
\(133\) 0 0
\(134\) 37.3378 3.22549
\(135\) −2.66208 −0.229115
\(136\) 18.8216 1.61394
\(137\) −18.0258 −1.54005 −0.770024 0.638015i \(-0.779756\pi\)
−0.770024 + 0.638015i \(0.779756\pi\)
\(138\) 13.9099 1.18409
\(139\) −2.67585 −0.226962 −0.113481 0.993540i \(-0.536200\pi\)
−0.113481 + 0.993540i \(0.536200\pi\)
\(140\) 0 0
\(141\) −2.09695 −0.176595
\(142\) −23.9151 −2.00691
\(143\) −1.57542 −0.131743
\(144\) 2.08666 0.173888
\(145\) 11.2805 0.936799
\(146\) 35.8823 2.96964
\(147\) 0 0
\(148\) 38.3603 3.15319
\(149\) −7.46471 −0.611533 −0.305766 0.952107i \(-0.598913\pi\)
−0.305766 + 0.952107i \(0.598913\pi\)
\(150\) 4.96522 0.405409
\(151\) 13.0155 1.05919 0.529594 0.848251i \(-0.322344\pi\)
0.529594 + 0.848251i \(0.322344\pi\)
\(152\) −8.84916 −0.717761
\(153\) −4.75902 −0.384744
\(154\) 0 0
\(155\) −19.3814 −1.55675
\(156\) 3.66208 0.293201
\(157\) 17.1233 1.36659 0.683294 0.730143i \(-0.260547\pi\)
0.683294 + 0.730143i \(0.260547\pi\)
\(158\) 27.9725 2.22537
\(159\) −1.08666 −0.0861774
\(160\) 7.83887 0.619717
\(161\) 0 0
\(162\) −2.37951 −0.186952
\(163\) −0.849158 −0.0665112 −0.0332556 0.999447i \(-0.510588\pi\)
−0.0332556 + 0.999447i \(0.510588\pi\)
\(164\) 8.24431 0.643773
\(165\) −4.19389 −0.326494
\(166\) 17.6586 1.37057
\(167\) −18.3781 −1.42214 −0.711068 0.703123i \(-0.751788\pi\)
−0.711068 + 0.703123i \(0.751788\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 30.1458 2.31208
\(171\) 2.23750 0.171106
\(172\) 3.34474 0.255034
\(173\) 12.2565 0.931844 0.465922 0.884826i \(-0.345723\pi\)
0.465922 + 0.884826i \(0.345723\pi\)
\(174\) 10.0832 0.764404
\(175\) 0 0
\(176\) 3.28736 0.247794
\(177\) −12.3344 −0.927114
\(178\) −26.5008 −1.98632
\(179\) 18.5146 1.38384 0.691922 0.721972i \(-0.256764\pi\)
0.691922 + 0.721972i \(0.256764\pi\)
\(180\) 9.74873 0.726628
\(181\) 18.1664 1.35029 0.675147 0.737683i \(-0.264080\pi\)
0.675147 + 0.737683i \(0.264080\pi\)
\(182\) 0 0
\(183\) −7.51805 −0.555750
\(184\) −23.1193 −1.70438
\(185\) 27.8853 2.05016
\(186\) −17.3242 −1.27027
\(187\) −7.49747 −0.548269
\(188\) 7.67918 0.560062
\(189\) 0 0
\(190\) −14.1733 −1.02824
\(191\) 23.5151 1.70149 0.850747 0.525575i \(-0.176150\pi\)
0.850747 + 0.525575i \(0.176150\pi\)
\(192\) 11.1801 0.806856
\(193\) 14.7344 1.06061 0.530303 0.847808i \(-0.322078\pi\)
0.530303 + 0.847808i \(0.322078\pi\)
\(194\) −34.7521 −2.49505
\(195\) 2.66208 0.190635
\(196\) 0 0
\(197\) 14.5008 1.03314 0.516570 0.856245i \(-0.327209\pi\)
0.516570 + 0.856245i \(0.327209\pi\)
\(198\) −3.74873 −0.266411
\(199\) 13.5180 0.958269 0.479135 0.877741i \(-0.340951\pi\)
0.479135 + 0.877741i \(0.340951\pi\)
\(200\) −8.25259 −0.583546
\(201\) 15.6914 1.10678
\(202\) −27.2094 −1.91445
\(203\) 0 0
\(204\) 17.4279 1.22020
\(205\) 5.99305 0.418572
\(206\) 26.5336 1.84868
\(207\) 5.84568 0.406303
\(208\) −2.08666 −0.144684
\(209\) 3.52500 0.243830
\(210\) 0 0
\(211\) 4.06419 0.279790 0.139895 0.990166i \(-0.455323\pi\)
0.139895 + 0.990166i \(0.455323\pi\)
\(212\) 3.97942 0.273308
\(213\) −10.0504 −0.688643
\(214\) −5.43487 −0.371520
\(215\) 2.43139 0.165820
\(216\) 3.95493 0.269099
\(217\) 0 0
\(218\) −34.9048 −2.36405
\(219\) 15.0797 1.01899
\(220\) 15.3584 1.03546
\(221\) 4.75902 0.320127
\(222\) 24.9254 1.67288
\(223\) 0.0641862 0.00429822 0.00214911 0.999998i \(-0.499316\pi\)
0.00214911 + 0.999998i \(0.499316\pi\)
\(224\) 0 0
\(225\) 2.08666 0.139110
\(226\) 10.0832 0.670723
\(227\) 1.68614 0.111913 0.0559564 0.998433i \(-0.482179\pi\)
0.0559564 + 0.998433i \(0.482179\pi\)
\(228\) −8.19389 −0.542654
\(229\) −0.648310 −0.0428415 −0.0214208 0.999771i \(-0.506819\pi\)
−0.0214208 + 0.999771i \(0.506819\pi\)
\(230\) −37.0291 −2.44163
\(231\) 0 0
\(232\) −16.7590 −1.10028
\(233\) 3.10724 0.203562 0.101781 0.994807i \(-0.467546\pi\)
0.101781 + 0.994807i \(0.467546\pi\)
\(234\) 2.37951 0.155554
\(235\) 5.58223 0.364145
\(236\) 45.1697 2.94030
\(237\) 11.7555 0.763605
\(238\) 0 0
\(239\) −15.0659 −0.974534 −0.487267 0.873253i \(-0.662006\pi\)
−0.487267 + 0.873253i \(0.662006\pi\)
\(240\) −5.55484 −0.358563
\(241\) −25.7280 −1.65729 −0.828643 0.559777i \(-0.810887\pi\)
−0.828643 + 0.559777i \(0.810887\pi\)
\(242\) 20.2688 1.30293
\(243\) −1.00000 −0.0641500
\(244\) 27.5317 1.76253
\(245\) 0 0
\(246\) 5.35692 0.341544
\(247\) −2.23750 −0.142369
\(248\) 28.7941 1.82843
\(249\) 7.42110 0.470293
\(250\) 18.4544 1.16716
\(251\) 11.6258 0.733816 0.366908 0.930257i \(-0.380416\pi\)
0.366908 + 0.930257i \(0.380416\pi\)
\(252\) 0 0
\(253\) 9.20941 0.578991
\(254\) −11.5386 −0.723998
\(255\) 12.6689 0.793357
\(256\) −26.9289 −1.68305
\(257\) 12.5651 0.783791 0.391896 0.920010i \(-0.371819\pi\)
0.391896 + 0.920010i \(0.371819\pi\)
\(258\) 2.17331 0.135305
\(259\) 0 0
\(260\) −9.74873 −0.604591
\(261\) 4.23750 0.262295
\(262\) −15.1508 −0.936022
\(263\) 9.37068 0.577821 0.288911 0.957356i \(-0.406707\pi\)
0.288911 + 0.957356i \(0.406707\pi\)
\(264\) 6.23069 0.383472
\(265\) 2.89276 0.177701
\(266\) 0 0
\(267\) −11.1371 −0.681578
\(268\) −57.4630 −3.51011
\(269\) 10.3918 0.633600 0.316800 0.948492i \(-0.397392\pi\)
0.316800 + 0.948492i \(0.397392\pi\)
\(270\) 6.33445 0.385502
\(271\) 5.13026 0.311641 0.155821 0.987785i \(-0.450198\pi\)
0.155821 + 0.987785i \(0.450198\pi\)
\(272\) −9.93045 −0.602122
\(273\) 0 0
\(274\) 42.8926 2.59124
\(275\) 3.28736 0.198235
\(276\) −21.4073 −1.28857
\(277\) 8.04361 0.483293 0.241647 0.970364i \(-0.422312\pi\)
0.241647 + 0.970364i \(0.422312\pi\)
\(278\) 6.36721 0.381880
\(279\) −7.28055 −0.435875
\(280\) 0 0
\(281\) −27.8525 −1.66154 −0.830770 0.556616i \(-0.812100\pi\)
−0.830770 + 0.556616i \(0.812100\pi\)
\(282\) 4.98971 0.297133
\(283\) −23.8197 −1.41594 −0.707968 0.706244i \(-0.750388\pi\)
−0.707968 + 0.706244i \(0.750388\pi\)
\(284\) 36.8054 2.18400
\(285\) −5.95639 −0.352826
\(286\) 3.74873 0.221667
\(287\) 0 0
\(288\) 2.94464 0.173515
\(289\) 5.64831 0.332254
\(290\) −26.8422 −1.57623
\(291\) −14.6047 −0.856143
\(292\) −55.2230 −3.23168
\(293\) 16.4612 0.961675 0.480838 0.876810i \(-0.340333\pi\)
0.480838 + 0.876810i \(0.340333\pi\)
\(294\) 0 0
\(295\) 32.8352 1.91174
\(296\) −41.4279 −2.40795
\(297\) −1.57542 −0.0914152
\(298\) 17.7624 1.02895
\(299\) −5.84568 −0.338064
\(300\) −7.64150 −0.441182
\(301\) 0 0
\(302\) −30.9706 −1.78216
\(303\) −11.4349 −0.656916
\(304\) 4.66889 0.267779
\(305\) 20.0136 1.14598
\(306\) 11.3242 0.647359
\(307\) −1.95639 −0.111657 −0.0558287 0.998440i \(-0.517780\pi\)
−0.0558287 + 0.998440i \(0.517780\pi\)
\(308\) 0 0
\(309\) 11.1508 0.634349
\(310\) 46.1182 2.61934
\(311\) 6.67585 0.378552 0.189276 0.981924i \(-0.439386\pi\)
0.189276 + 0.981924i \(0.439386\pi\)
\(312\) −3.95493 −0.223904
\(313\) 6.78364 0.383434 0.191717 0.981450i \(-0.438594\pi\)
0.191717 + 0.981450i \(0.438594\pi\)
\(314\) −40.7451 −2.29938
\(315\) 0 0
\(316\) −43.0497 −2.42174
\(317\) −30.6947 −1.72399 −0.861993 0.506920i \(-0.830784\pi\)
−0.861993 + 0.506920i \(0.830784\pi\)
\(318\) 2.58571 0.145000
\(319\) 6.67585 0.373776
\(320\) −29.7624 −1.66377
\(321\) −2.28403 −0.127482
\(322\) 0 0
\(323\) −10.6483 −0.592488
\(324\) 3.66208 0.203449
\(325\) −2.08666 −0.115747
\(326\) 2.02058 0.111910
\(327\) −14.6689 −0.811191
\(328\) −8.90361 −0.491620
\(329\) 0 0
\(330\) 9.97942 0.549349
\(331\) −13.8267 −0.759983 −0.379992 0.924990i \(-0.624073\pi\)
−0.379992 + 0.924990i \(0.624073\pi\)
\(332\) −27.1766 −1.49151
\(333\) 10.4750 0.574026
\(334\) 43.7308 2.39284
\(335\) −41.7716 −2.28223
\(336\) 0 0
\(337\) 23.8633 1.29992 0.649959 0.759969i \(-0.274786\pi\)
0.649959 + 0.759969i \(0.274786\pi\)
\(338\) −2.37951 −0.129428
\(339\) 4.23750 0.230149
\(340\) −46.3945 −2.51609
\(341\) −11.4699 −0.621132
\(342\) −5.32415 −0.287897
\(343\) 0 0
\(344\) −3.61221 −0.194758
\(345\) −15.5617 −0.837811
\(346\) −29.1645 −1.56789
\(347\) −13.6012 −0.730152 −0.365076 0.930978i \(-0.618957\pi\)
−0.365076 + 0.930978i \(0.618957\pi\)
\(348\) −15.5180 −0.831855
\(349\) 16.4039 0.878078 0.439039 0.898468i \(-0.355319\pi\)
0.439039 + 0.898468i \(0.355319\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 4.63905 0.247262
\(353\) 4.73322 0.251924 0.125962 0.992035i \(-0.459798\pi\)
0.125962 + 0.992035i \(0.459798\pi\)
\(354\) 29.3500 1.55993
\(355\) 26.7550 1.42001
\(356\) 40.7848 2.16159
\(357\) 0 0
\(358\) −44.0556 −2.32841
\(359\) −17.5479 −0.926142 −0.463071 0.886321i \(-0.653253\pi\)
−0.463071 + 0.886321i \(0.653253\pi\)
\(360\) −10.5283 −0.554892
\(361\) −13.9936 −0.736505
\(362\) −43.2271 −2.27196
\(363\) 8.51805 0.447082
\(364\) 0 0
\(365\) −40.1433 −2.10120
\(366\) 17.8893 0.935088
\(367\) 11.1888 0.584052 0.292026 0.956410i \(-0.405671\pi\)
0.292026 + 0.956410i \(0.405671\pi\)
\(368\) 12.1979 0.635861
\(369\) 2.25127 0.117196
\(370\) −66.3533 −3.44954
\(371\) 0 0
\(372\) 26.6619 1.38236
\(373\) −5.43195 −0.281256 −0.140628 0.990063i \(-0.544912\pi\)
−0.140628 + 0.990063i \(0.544912\pi\)
\(374\) 17.8403 0.922501
\(375\) 7.75555 0.400495
\(376\) −8.29328 −0.427693
\(377\) −4.23750 −0.218242
\(378\) 0 0
\(379\) 10.8422 0.556927 0.278463 0.960447i \(-0.410175\pi\)
0.278463 + 0.960447i \(0.410175\pi\)
\(380\) 21.8128 1.11897
\(381\) −4.84916 −0.248430
\(382\) −55.9545 −2.86288
\(383\) −10.5353 −0.538328 −0.269164 0.963094i \(-0.586747\pi\)
−0.269164 + 0.963094i \(0.586747\pi\)
\(384\) −20.7140 −1.05705
\(385\) 0 0
\(386\) −35.0607 −1.78454
\(387\) 0.913344 0.0464279
\(388\) 53.4836 2.71522
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) −6.33445 −0.320757
\(391\) −27.8197 −1.40690
\(392\) 0 0
\(393\) −6.36721 −0.321183
\(394\) −34.5048 −1.73833
\(395\) −31.2942 −1.57458
\(396\) 5.76931 0.289919
\(397\) 35.4400 1.77868 0.889340 0.457246i \(-0.151164\pi\)
0.889340 + 0.457246i \(0.151164\pi\)
\(398\) −32.1664 −1.61235
\(399\) 0 0
\(400\) 4.35413 0.217707
\(401\) 23.7241 1.18473 0.592363 0.805671i \(-0.298195\pi\)
0.592363 + 0.805671i \(0.298195\pi\)
\(402\) −37.3378 −1.86224
\(403\) 7.28055 0.362670
\(404\) 41.8754 2.08338
\(405\) 2.66208 0.132280
\(406\) 0 0
\(407\) 16.5025 0.818000
\(408\) −18.8216 −0.931809
\(409\) 3.95639 0.195631 0.0978156 0.995205i \(-0.468814\pi\)
0.0978156 + 0.995205i \(0.468814\pi\)
\(410\) −14.2605 −0.704277
\(411\) 18.0258 0.889147
\(412\) −40.8352 −2.01181
\(413\) 0 0
\(414\) −13.9099 −0.683633
\(415\) −19.7555 −0.969762
\(416\) −2.94464 −0.144373
\(417\) 2.67585 0.131037
\(418\) −8.38779 −0.410260
\(419\) 18.0586 0.882219 0.441109 0.897453i \(-0.354585\pi\)
0.441109 + 0.897453i \(0.354585\pi\)
\(420\) 0 0
\(421\) 24.4956 1.19384 0.596921 0.802300i \(-0.296391\pi\)
0.596921 + 0.802300i \(0.296391\pi\)
\(422\) −9.67078 −0.470766
\(423\) 2.09695 0.101957
\(424\) −4.29765 −0.208712
\(425\) −9.93045 −0.481697
\(426\) 23.9151 1.15869
\(427\) 0 0
\(428\) 8.36428 0.404303
\(429\) 1.57542 0.0760621
\(430\) −5.78553 −0.279003
\(431\) −40.7779 −1.96420 −0.982101 0.188357i \(-0.939684\pi\)
−0.982101 + 0.188357i \(0.939684\pi\)
\(432\) −2.08666 −0.100394
\(433\) 18.0791 0.868828 0.434414 0.900713i \(-0.356955\pi\)
0.434414 + 0.900713i \(0.356955\pi\)
\(434\) 0 0
\(435\) −11.2805 −0.540861
\(436\) 53.7186 2.57265
\(437\) 13.0797 0.625687
\(438\) −35.8823 −1.71452
\(439\) −20.7561 −0.990635 −0.495317 0.868712i \(-0.664948\pi\)
−0.495317 + 0.868712i \(0.664948\pi\)
\(440\) −16.5866 −0.790734
\(441\) 0 0
\(442\) −11.3242 −0.538635
\(443\) −8.24042 −0.391514 −0.195757 0.980652i \(-0.562716\pi\)
−0.195757 + 0.980652i \(0.562716\pi\)
\(444\) −38.3603 −1.82050
\(445\) 29.6478 1.40544
\(446\) −0.152732 −0.00723206
\(447\) 7.46471 0.353069
\(448\) 0 0
\(449\) 36.1061 1.70395 0.851975 0.523582i \(-0.175405\pi\)
0.851975 + 0.523582i \(0.175405\pi\)
\(450\) −4.96522 −0.234063
\(451\) 3.54669 0.167007
\(452\) −15.5180 −0.729908
\(453\) −13.0155 −0.611522
\(454\) −4.01218 −0.188301
\(455\) 0 0
\(456\) 8.84916 0.414400
\(457\) −6.54052 −0.305953 −0.152976 0.988230i \(-0.548886\pi\)
−0.152976 + 0.988230i \(0.548886\pi\)
\(458\) 1.54266 0.0720838
\(459\) 4.75902 0.222132
\(460\) 56.9880 2.65708
\(461\) 14.6987 0.684588 0.342294 0.939593i \(-0.388796\pi\)
0.342294 + 0.939593i \(0.388796\pi\)
\(462\) 0 0
\(463\) 21.7775 1.01208 0.506042 0.862509i \(-0.331108\pi\)
0.506042 + 0.862509i \(0.331108\pi\)
\(464\) 8.84220 0.410489
\(465\) 19.3814 0.898790
\(466\) −7.39371 −0.342507
\(467\) −35.0086 −1.62000 −0.810001 0.586428i \(-0.800534\pi\)
−0.810001 + 0.586428i \(0.800534\pi\)
\(468\) −3.66208 −0.169280
\(469\) 0 0
\(470\) −13.2830 −0.612699
\(471\) −17.1233 −0.789000
\(472\) −48.7819 −2.24537
\(473\) 1.43890 0.0661607
\(474\) −27.9725 −1.28482
\(475\) 4.66889 0.214223
\(476\) 0 0
\(477\) 1.08666 0.0497546
\(478\) 35.8496 1.63972
\(479\) −31.7814 −1.45213 −0.726064 0.687628i \(-0.758652\pi\)
−0.726064 + 0.687628i \(0.758652\pi\)
\(480\) −7.83887 −0.357794
\(481\) −10.4750 −0.477619
\(482\) 61.2201 2.78850
\(483\) 0 0
\(484\) −31.1938 −1.41790
\(485\) 38.8789 1.76540
\(486\) 2.37951 0.107937
\(487\) −28.5817 −1.29516 −0.647580 0.761998i \(-0.724219\pi\)
−0.647580 + 0.761998i \(0.724219\pi\)
\(488\) −29.7334 −1.34597
\(489\) 0.849158 0.0384002
\(490\) 0 0
\(491\) 21.7160 0.980028 0.490014 0.871715i \(-0.336992\pi\)
0.490014 + 0.871715i \(0.336992\pi\)
\(492\) −8.24431 −0.371682
\(493\) −20.1664 −0.908247
\(494\) 5.32415 0.239545
\(495\) 4.19389 0.188501
\(496\) −15.1920 −0.682141
\(497\) 0 0
\(498\) −17.6586 −0.791301
\(499\) −42.6895 −1.91104 −0.955522 0.294921i \(-0.904707\pi\)
−0.955522 + 0.294921i \(0.904707\pi\)
\(500\) −28.4014 −1.27015
\(501\) 18.3781 0.821071
\(502\) −27.6638 −1.23470
\(503\) −21.8922 −0.976125 −0.488063 0.872809i \(-0.662296\pi\)
−0.488063 + 0.872809i \(0.662296\pi\)
\(504\) 0 0
\(505\) 30.4405 1.35458
\(506\) −21.9139 −0.974192
\(507\) −1.00000 −0.0444116
\(508\) 17.7580 0.787883
\(509\) 5.36546 0.237820 0.118910 0.992905i \(-0.462060\pi\)
0.118910 + 0.992905i \(0.462060\pi\)
\(510\) −30.1458 −1.33488
\(511\) 0 0
\(512\) 22.6496 1.00098
\(513\) −2.23750 −0.0987880
\(514\) −29.8989 −1.31878
\(515\) −29.6844 −1.30805
\(516\) −3.34474 −0.147244
\(517\) 3.30357 0.145291
\(518\) 0 0
\(519\) −12.2565 −0.538000
\(520\) 10.5283 0.461698
\(521\) 11.5221 0.504791 0.252396 0.967624i \(-0.418782\pi\)
0.252396 + 0.967624i \(0.418782\pi\)
\(522\) −10.0832 −0.441329
\(523\) 3.62584 0.158547 0.0792734 0.996853i \(-0.474740\pi\)
0.0792734 + 0.996853i \(0.474740\pi\)
\(524\) 23.3172 1.01862
\(525\) 0 0
\(526\) −22.2977 −0.972224
\(527\) 34.6483 1.50930
\(528\) −3.28736 −0.143064
\(529\) 11.1720 0.485738
\(530\) −6.88336 −0.298994
\(531\) 12.3344 0.535269
\(532\) 0 0
\(533\) −2.25127 −0.0975132
\(534\) 26.5008 1.14680
\(535\) 6.08026 0.262872
\(536\) 62.0583 2.68051
\(537\) −18.5146 −0.798963
\(538\) −24.7275 −1.06608
\(539\) 0 0
\(540\) −9.74873 −0.419519
\(541\) 37.2300 1.60064 0.800321 0.599572i \(-0.204662\pi\)
0.800321 + 0.599572i \(0.204662\pi\)
\(542\) −12.2075 −0.524358
\(543\) −18.1664 −0.779593
\(544\) −14.0136 −0.600829
\(545\) 39.0497 1.67271
\(546\) 0 0
\(547\) −4.34529 −0.185791 −0.0928956 0.995676i \(-0.529612\pi\)
−0.0928956 + 0.995676i \(0.529612\pi\)
\(548\) −66.0119 −2.81989
\(549\) 7.51805 0.320862
\(550\) −7.82232 −0.333545
\(551\) 9.48140 0.403921
\(552\) 23.1193 0.984022
\(553\) 0 0
\(554\) −19.1399 −0.813175
\(555\) −27.8853 −1.18366
\(556\) −9.79915 −0.415577
\(557\) 28.0052 1.18662 0.593310 0.804974i \(-0.297821\pi\)
0.593310 + 0.804974i \(0.297821\pi\)
\(558\) 17.3242 0.733390
\(559\) −0.913344 −0.0386303
\(560\) 0 0
\(561\) 7.49747 0.316543
\(562\) 66.2753 2.79566
\(563\) 22.2525 0.937829 0.468915 0.883243i \(-0.344645\pi\)
0.468915 + 0.883243i \(0.344645\pi\)
\(564\) −7.67918 −0.323352
\(565\) −11.2805 −0.474576
\(566\) 56.6793 2.38241
\(567\) 0 0
\(568\) −39.7487 −1.66782
\(569\) 3.10724 0.130262 0.0651311 0.997877i \(-0.479253\pi\)
0.0651311 + 0.997877i \(0.479253\pi\)
\(570\) 14.1733 0.593655
\(571\) 16.5772 0.693733 0.346866 0.937915i \(-0.387246\pi\)
0.346866 + 0.937915i \(0.387246\pi\)
\(572\) −5.76931 −0.241227
\(573\) −23.5151 −0.982358
\(574\) 0 0
\(575\) 12.1979 0.508689
\(576\) −11.1801 −0.465839
\(577\) 7.45253 0.310253 0.155126 0.987895i \(-0.450422\pi\)
0.155126 + 0.987895i \(0.450422\pi\)
\(578\) −13.4402 −0.559039
\(579\) −14.7344 −0.612341
\(580\) 41.3102 1.71531
\(581\) 0 0
\(582\) 34.7521 1.44052
\(583\) 1.71194 0.0709014
\(584\) 59.6392 2.46789
\(585\) −2.66208 −0.110063
\(586\) −39.1697 −1.61809
\(587\) −11.9892 −0.494845 −0.247423 0.968908i \(-0.579584\pi\)
−0.247423 + 0.968908i \(0.579584\pi\)
\(588\) 0 0
\(589\) −16.2902 −0.671227
\(590\) −78.1319 −3.21664
\(591\) −14.5008 −0.596483
\(592\) 21.8577 0.898347
\(593\) 33.4767 1.37473 0.687363 0.726314i \(-0.258768\pi\)
0.687363 + 0.726314i \(0.258768\pi\)
\(594\) 3.74873 0.153812
\(595\) 0 0
\(596\) −27.3363 −1.11974
\(597\) −13.5180 −0.553257
\(598\) 13.9099 0.568817
\(599\) −13.5863 −0.555120 −0.277560 0.960708i \(-0.589526\pi\)
−0.277560 + 0.960708i \(0.589526\pi\)
\(600\) 8.25259 0.336910
\(601\) 6.78364 0.276710 0.138355 0.990383i \(-0.455818\pi\)
0.138355 + 0.990383i \(0.455818\pi\)
\(602\) 0 0
\(603\) −15.6914 −0.639002
\(604\) 47.6638 1.93941
\(605\) −22.6757 −0.921898
\(606\) 27.2094 1.10531
\(607\) 17.4905 0.709918 0.354959 0.934882i \(-0.384495\pi\)
0.354959 + 0.934882i \(0.384495\pi\)
\(608\) 6.58863 0.267204
\(609\) 0 0
\(610\) −47.6227 −1.92819
\(611\) −2.09695 −0.0848334
\(612\) −17.4279 −0.704482
\(613\) −38.2455 −1.54472 −0.772361 0.635184i \(-0.780924\pi\)
−0.772361 + 0.635184i \(0.780924\pi\)
\(614\) 4.65526 0.187871
\(615\) −5.99305 −0.241663
\(616\) 0 0
\(617\) −34.1542 −1.37500 −0.687498 0.726187i \(-0.741291\pi\)
−0.687498 + 0.726187i \(0.741291\pi\)
\(618\) −26.5336 −1.06734
\(619\) 8.56805 0.344379 0.172190 0.985064i \(-0.444916\pi\)
0.172190 + 0.985064i \(0.444916\pi\)
\(620\) −70.9761 −2.85047
\(621\) −5.84568 −0.234579
\(622\) −15.8853 −0.636941
\(623\) 0 0
\(624\) 2.08666 0.0835331
\(625\) −31.0791 −1.24317
\(626\) −16.1417 −0.645154
\(627\) −3.52500 −0.140775
\(628\) 62.7069 2.50228
\(629\) −49.8508 −1.98768
\(630\) 0 0
\(631\) −17.7119 −0.705101 −0.352551 0.935793i \(-0.614686\pi\)
−0.352551 + 0.935793i \(0.614686\pi\)
\(632\) 46.4924 1.84937
\(633\) −4.06419 −0.161537
\(634\) 73.0384 2.90073
\(635\) 12.9088 0.512271
\(636\) −3.97942 −0.157794
\(637\) 0 0
\(638\) −15.8853 −0.628903
\(639\) 10.0504 0.397588
\(640\) 55.1422 2.17969
\(641\) 16.6117 0.656121 0.328061 0.944657i \(-0.393605\pi\)
0.328061 + 0.944657i \(0.393605\pi\)
\(642\) 5.43487 0.214497
\(643\) −12.9500 −0.510698 −0.255349 0.966849i \(-0.582190\pi\)
−0.255349 + 0.966849i \(0.582190\pi\)
\(644\) 0 0
\(645\) −2.43139 −0.0957360
\(646\) 25.3378 0.996902
\(647\) 23.6775 0.930857 0.465428 0.885086i \(-0.345900\pi\)
0.465428 + 0.885086i \(0.345900\pi\)
\(648\) −3.95493 −0.155364
\(649\) 19.4319 0.762771
\(650\) 4.96522 0.194752
\(651\) 0 0
\(652\) −3.10968 −0.121785
\(653\) 22.2811 0.871927 0.435963 0.899964i \(-0.356408\pi\)
0.435963 + 0.899964i \(0.356408\pi\)
\(654\) 34.9048 1.36489
\(655\) 16.9500 0.662291
\(656\) 4.69762 0.183411
\(657\) −15.0797 −0.588315
\(658\) 0 0
\(659\) 15.5165 0.604435 0.302218 0.953239i \(-0.402273\pi\)
0.302218 + 0.953239i \(0.402273\pi\)
\(660\) −15.3584 −0.597823
\(661\) −28.1444 −1.09469 −0.547346 0.836906i \(-0.684362\pi\)
−0.547346 + 0.836906i \(0.684362\pi\)
\(662\) 32.9008 1.27872
\(663\) −4.75902 −0.184825
\(664\) 29.3500 1.13900
\(665\) 0 0
\(666\) −24.9254 −0.965839
\(667\) 24.7711 0.959139
\(668\) −67.3018 −2.60399
\(669\) −0.0641862 −0.00248158
\(670\) 99.3961 3.84000
\(671\) 11.8441 0.457236
\(672\) 0 0
\(673\) 7.13477 0.275025 0.137513 0.990500i \(-0.456089\pi\)
0.137513 + 0.990500i \(0.456089\pi\)
\(674\) −56.7831 −2.18720
\(675\) −2.08666 −0.0803154
\(676\) 3.66208 0.140849
\(677\) 10.7660 0.413770 0.206885 0.978365i \(-0.433667\pi\)
0.206885 + 0.978365i \(0.433667\pi\)
\(678\) −10.0832 −0.387242
\(679\) 0 0
\(680\) 50.1046 1.92142
\(681\) −1.68614 −0.0646129
\(682\) 27.2928 1.04510
\(683\) −12.2020 −0.466898 −0.233449 0.972369i \(-0.575001\pi\)
−0.233449 + 0.972369i \(0.575001\pi\)
\(684\) 8.19389 0.313301
\(685\) −47.9861 −1.83345
\(686\) 0 0
\(687\) 0.648310 0.0247346
\(688\) 1.90583 0.0726593
\(689\) −1.08666 −0.0413983
\(690\) 37.0291 1.40968
\(691\) −32.0367 −1.21873 −0.609366 0.792889i \(-0.708576\pi\)
−0.609366 + 0.792889i \(0.708576\pi\)
\(692\) 44.8842 1.70624
\(693\) 0 0
\(694\) 32.3643 1.22853
\(695\) −7.12331 −0.270202
\(696\) 16.7590 0.635249
\(697\) −10.7138 −0.405815
\(698\) −39.0332 −1.47743
\(699\) −3.10724 −0.117526
\(700\) 0 0
\(701\) −14.9513 −0.564704 −0.282352 0.959311i \(-0.591115\pi\)
−0.282352 + 0.959311i \(0.591115\pi\)
\(702\) −2.37951 −0.0898089
\(703\) 23.4378 0.883973
\(704\) −17.6134 −0.663830
\(705\) −5.58223 −0.210239
\(706\) −11.2627 −0.423879
\(707\) 0 0
\(708\) −45.1697 −1.69758
\(709\) −8.58279 −0.322333 −0.161167 0.986927i \(-0.551526\pi\)
−0.161167 + 0.986927i \(0.551526\pi\)
\(710\) −63.6638 −2.38926
\(711\) −11.7555 −0.440867
\(712\) −44.0464 −1.65071
\(713\) −42.5598 −1.59388
\(714\) 0 0
\(715\) −4.19389 −0.156843
\(716\) 67.8018 2.53387
\(717\) 15.0659 0.562648
\(718\) 41.7554 1.55830
\(719\) −35.9644 −1.34125 −0.670623 0.741798i \(-0.733973\pi\)
−0.670623 + 0.741798i \(0.733973\pi\)
\(720\) 5.55484 0.207017
\(721\) 0 0
\(722\) 33.2979 1.23922
\(723\) 25.7280 0.956835
\(724\) 66.5266 2.47244
\(725\) 8.84220 0.328391
\(726\) −20.2688 −0.752246
\(727\) 31.5111 1.16868 0.584341 0.811508i \(-0.301353\pi\)
0.584341 + 0.811508i \(0.301353\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 95.5215 3.53541
\(731\) −4.34662 −0.160766
\(732\) −27.5317 −1.01760
\(733\) 26.6047 0.982667 0.491334 0.870971i \(-0.336510\pi\)
0.491334 + 0.870971i \(0.336510\pi\)
\(734\) −26.6240 −0.982708
\(735\) 0 0
\(736\) 17.2134 0.634496
\(737\) −24.7205 −0.910591
\(738\) −5.35692 −0.197191
\(739\) −50.3397 −1.85177 −0.925887 0.377800i \(-0.876681\pi\)
−0.925887 + 0.377800i \(0.876681\pi\)
\(740\) 102.118 3.75393
\(741\) 2.23750 0.0821966
\(742\) 0 0
\(743\) 23.4021 0.858540 0.429270 0.903176i \(-0.358771\pi\)
0.429270 + 0.903176i \(0.358771\pi\)
\(744\) −28.7941 −1.05564
\(745\) −19.8716 −0.728040
\(746\) 12.9254 0.473232
\(747\) −7.42110 −0.271524
\(748\) −27.4563 −1.00390
\(749\) 0 0
\(750\) −18.4544 −0.673860
\(751\) 49.0305 1.78915 0.894574 0.446920i \(-0.147479\pi\)
0.894574 + 0.446920i \(0.147479\pi\)
\(752\) 4.37561 0.159562
\(753\) −11.6258 −0.423669
\(754\) 10.0832 0.367208
\(755\) 34.6483 1.26098
\(756\) 0 0
\(757\) −35.3883 −1.28621 −0.643106 0.765778i \(-0.722354\pi\)
−0.643106 + 0.765778i \(0.722354\pi\)
\(758\) −25.7992 −0.937067
\(759\) −9.20941 −0.334280
\(760\) −23.5571 −0.854507
\(761\) −27.7051 −1.00431 −0.502155 0.864778i \(-0.667459\pi\)
−0.502155 + 0.864778i \(0.667459\pi\)
\(762\) 11.5386 0.418000
\(763\) 0 0
\(764\) 86.1142 3.11550
\(765\) −12.6689 −0.458045
\(766\) 25.0689 0.905775
\(767\) −12.3344 −0.445371
\(768\) 26.9289 0.971712
\(769\) −21.1383 −0.762265 −0.381133 0.924520i \(-0.624466\pi\)
−0.381133 + 0.924520i \(0.624466\pi\)
\(770\) 0 0
\(771\) −12.5651 −0.452522
\(772\) 53.9586 1.94201
\(773\) 41.4537 1.49099 0.745493 0.666513i \(-0.232214\pi\)
0.745493 + 0.666513i \(0.232214\pi\)
\(774\) −2.17331 −0.0781181
\(775\) −15.1920 −0.545713
\(776\) −57.7606 −2.07349
\(777\) 0 0
\(778\) −14.2771 −0.511858
\(779\) 5.03721 0.180477
\(780\) 9.74873 0.349061
\(781\) 15.8336 0.566572
\(782\) 66.1974 2.36721
\(783\) −4.23750 −0.151436
\(784\) 0 0
\(785\) 45.5836 1.62695
\(786\) 15.1508 0.540413
\(787\) 28.7711 1.02558 0.512789 0.858515i \(-0.328612\pi\)
0.512789 + 0.858515i \(0.328612\pi\)
\(788\) 53.1031 1.89172
\(789\) −9.37068 −0.333605
\(790\) 74.4649 2.64934
\(791\) 0 0
\(792\) −6.23069 −0.221398
\(793\) −7.51805 −0.266974
\(794\) −84.3298 −2.99275
\(795\) −2.89276 −0.102596
\(796\) 49.5041 1.75463
\(797\) −19.5357 −0.691990 −0.345995 0.938236i \(-0.612459\pi\)
−0.345995 + 0.938236i \(0.612459\pi\)
\(798\) 0 0
\(799\) −9.97942 −0.353046
\(800\) 6.14446 0.217239
\(801\) 11.1371 0.393509
\(802\) −56.4518 −1.99338
\(803\) −23.7569 −0.838362
\(804\) 57.4630 2.02656
\(805\) 0 0
\(806\) −17.3242 −0.610217
\(807\) −10.3918 −0.365809
\(808\) −45.2241 −1.59098
\(809\) −36.1824 −1.27211 −0.636053 0.771645i \(-0.719434\pi\)
−0.636053 + 0.771645i \(0.719434\pi\)
\(810\) −6.33445 −0.222570
\(811\) −0.794087 −0.0278842 −0.0139421 0.999903i \(-0.504438\pi\)
−0.0139421 + 0.999903i \(0.504438\pi\)
\(812\) 0 0
\(813\) −5.13026 −0.179926
\(814\) −39.2680 −1.37634
\(815\) −2.26052 −0.0791827
\(816\) 9.93045 0.347635
\(817\) 2.04361 0.0714967
\(818\) −9.41429 −0.329163
\(819\) 0 0
\(820\) 21.9470 0.766422
\(821\) −15.8525 −0.553256 −0.276628 0.960977i \(-0.589217\pi\)
−0.276628 + 0.960977i \(0.589217\pi\)
\(822\) −42.8926 −1.49605
\(823\) −20.0412 −0.698591 −0.349295 0.937013i \(-0.613579\pi\)
−0.349295 + 0.937013i \(0.613579\pi\)
\(824\) 44.1008 1.53633
\(825\) −3.28736 −0.114451
\(826\) 0 0
\(827\) 34.7848 1.20959 0.604794 0.796382i \(-0.293256\pi\)
0.604794 + 0.796382i \(0.293256\pi\)
\(828\) 21.4073 0.743956
\(829\) 30.6793 1.06554 0.532769 0.846261i \(-0.321152\pi\)
0.532769 + 0.846261i \(0.321152\pi\)
\(830\) 47.0086 1.63169
\(831\) −8.04361 −0.279030
\(832\) 11.1801 0.387601
\(833\) 0 0
\(834\) −6.36721 −0.220478
\(835\) −48.9238 −1.69308
\(836\) 12.9088 0.446461
\(837\) 7.28055 0.251653
\(838\) −42.9706 −1.48439
\(839\) −39.8238 −1.37487 −0.687436 0.726245i \(-0.741264\pi\)
−0.687436 + 0.726245i \(0.741264\pi\)
\(840\) 0 0
\(841\) −11.0436 −0.380814
\(842\) −58.2875 −2.00872
\(843\) 27.8525 0.959291
\(844\) 14.8834 0.512307
\(845\) 2.66208 0.0915782
\(846\) −4.98971 −0.171550
\(847\) 0 0
\(848\) 2.26748 0.0778655
\(849\) 23.8197 0.817491
\(850\) 23.6296 0.810489
\(851\) 61.2335 2.09906
\(852\) −36.8054 −1.26093
\(853\) −24.7505 −0.847440 −0.423720 0.905793i \(-0.639276\pi\)
−0.423720 + 0.905793i \(0.639276\pi\)
\(854\) 0 0
\(855\) 5.95639 0.203704
\(856\) −9.03317 −0.308748
\(857\) −6.47097 −0.221044 −0.110522 0.993874i \(-0.535252\pi\)
−0.110522 + 0.993874i \(0.535252\pi\)
\(858\) −3.74873 −0.127980
\(859\) −31.0741 −1.06023 −0.530117 0.847925i \(-0.677852\pi\)
−0.530117 + 0.847925i \(0.677852\pi\)
\(860\) 8.90395 0.303622
\(861\) 0 0
\(862\) 97.0314 3.30490
\(863\) 28.6391 0.974885 0.487442 0.873155i \(-0.337930\pi\)
0.487442 + 0.873155i \(0.337930\pi\)
\(864\) −2.94464 −0.100179
\(865\) 32.6277 1.10938
\(866\) −43.0195 −1.46186
\(867\) −5.64831 −0.191827
\(868\) 0 0
\(869\) −18.5199 −0.628246
\(870\) 26.8422 0.910036
\(871\) 15.6914 0.531681
\(872\) −58.0145 −1.96462
\(873\) 14.6047 0.494294
\(874\) −31.1233 −1.05276
\(875\) 0 0
\(876\) 55.2230 1.86581
\(877\) 0.00110921 3.74555e−5 0 1.87278e−5 1.00000i \(-0.499994\pi\)
1.87278e−5 1.00000i \(0.499994\pi\)
\(878\) 49.3894 1.66681
\(879\) −16.4612 −0.555223
\(880\) 8.75121 0.295003
\(881\) −23.9479 −0.806824 −0.403412 0.915019i \(-0.632176\pi\)
−0.403412 + 0.915019i \(0.632176\pi\)
\(882\) 0 0
\(883\) 51.9965 1.74982 0.874911 0.484283i \(-0.160919\pi\)
0.874911 + 0.484283i \(0.160919\pi\)
\(884\) 17.4279 0.586164
\(885\) −32.8352 −1.10374
\(886\) 19.6082 0.658750
\(887\) −10.8697 −0.364970 −0.182485 0.983209i \(-0.558414\pi\)
−0.182485 + 0.983209i \(0.558414\pi\)
\(888\) 41.4279 1.39023
\(889\) 0 0
\(890\) −70.5472 −2.36475
\(891\) 1.57542 0.0527786
\(892\) 0.235055 0.00787021
\(893\) 4.69192 0.157009
\(894\) −17.7624 −0.594062
\(895\) 49.2872 1.64749
\(896\) 0 0
\(897\) 5.84568 0.195182
\(898\) −85.9148 −2.86701
\(899\) −30.8513 −1.02895
\(900\) 7.64150 0.254717
\(901\) −5.17142 −0.172285
\(902\) −8.43940 −0.281001
\(903\) 0 0
\(904\) 16.7590 0.557397
\(905\) 48.3603 1.60755
\(906\) 30.9706 1.02893
\(907\) −25.4892 −0.846354 −0.423177 0.906047i \(-0.639085\pi\)
−0.423177 + 0.906047i \(0.639085\pi\)
\(908\) 6.17476 0.204917
\(909\) 11.4349 0.379271
\(910\) 0 0
\(911\) 42.2059 1.39834 0.699172 0.714953i \(-0.253552\pi\)
0.699172 + 0.714953i \(0.253552\pi\)
\(912\) −4.66889 −0.154602
\(913\) −11.6914 −0.386928
\(914\) 15.5632 0.514786
\(915\) −20.0136 −0.661630
\(916\) −2.37416 −0.0784445
\(917\) 0 0
\(918\) −11.3242 −0.373753
\(919\) −29.4033 −0.969925 −0.484963 0.874535i \(-0.661167\pi\)
−0.484963 + 0.874535i \(0.661167\pi\)
\(920\) −61.5453 −2.02909
\(921\) 1.95639 0.0644654
\(922\) −34.9758 −1.15187
\(923\) −10.0504 −0.330814
\(924\) 0 0
\(925\) 21.8577 0.718677
\(926\) −51.8197 −1.70290
\(927\) −11.1508 −0.366242
\(928\) 12.4779 0.409608
\(929\) 13.3759 0.438849 0.219425 0.975629i \(-0.429582\pi\)
0.219425 + 0.975629i \(0.429582\pi\)
\(930\) −46.1182 −1.51228
\(931\) 0 0
\(932\) 11.3789 0.372730
\(933\) −6.67585 −0.218557
\(934\) 83.3033 2.72577
\(935\) −19.9588 −0.652724
\(936\) 3.95493 0.129271
\(937\) 24.9981 0.816653 0.408326 0.912836i \(-0.366113\pi\)
0.408326 + 0.912836i \(0.366113\pi\)
\(938\) 0 0
\(939\) −6.78364 −0.221376
\(940\) 20.4426 0.666763
\(941\) −10.5369 −0.343493 −0.171746 0.985141i \(-0.554941\pi\)
−0.171746 + 0.985141i \(0.554941\pi\)
\(942\) 40.7451 1.32755
\(943\) 13.1602 0.428555
\(944\) 25.7377 0.837692
\(945\) 0 0
\(946\) −3.42388 −0.111320
\(947\) −52.7779 −1.71505 −0.857525 0.514442i \(-0.827999\pi\)
−0.857525 + 0.514442i \(0.827999\pi\)
\(948\) 43.0497 1.39819
\(949\) 15.0797 0.489508
\(950\) −11.1097 −0.360446
\(951\) 30.6947 0.995344
\(952\) 0 0
\(953\) 21.8486 0.707746 0.353873 0.935294i \(-0.384865\pi\)
0.353873 + 0.935294i \(0.384865\pi\)
\(954\) −2.58571 −0.0837155
\(955\) 62.5991 2.02566
\(956\) −55.1726 −1.78441
\(957\) −6.67585 −0.215799
\(958\) 75.6241 2.44330
\(959\) 0 0
\(960\) 29.7624 0.960576
\(961\) 22.0064 0.709884
\(962\) 24.9254 0.803627
\(963\) 2.28403 0.0736017
\(964\) −94.2180 −3.03456
\(965\) 39.2241 1.26267
\(966\) 0 0
\(967\) 1.94143 0.0624323 0.0312162 0.999513i \(-0.490062\pi\)
0.0312162 + 0.999513i \(0.490062\pi\)
\(968\) 33.6883 1.08278
\(969\) 10.6483 0.342073
\(970\) −92.5127 −2.97040
\(971\) 14.9077 0.478412 0.239206 0.970969i \(-0.423113\pi\)
0.239206 + 0.970969i \(0.423113\pi\)
\(972\) −3.66208 −0.117461
\(973\) 0 0
\(974\) 68.0105 2.17920
\(975\) 2.08666 0.0668265
\(976\) 15.6876 0.502147
\(977\) −16.5353 −0.529011 −0.264505 0.964384i \(-0.585209\pi\)
−0.264505 + 0.964384i \(0.585209\pi\)
\(978\) −2.02058 −0.0646110
\(979\) 17.5456 0.560759
\(980\) 0 0
\(981\) 14.6689 0.468342
\(982\) −51.6734 −1.64897
\(983\) 30.0694 0.959065 0.479533 0.877524i \(-0.340806\pi\)
0.479533 + 0.877524i \(0.340806\pi\)
\(984\) 8.90361 0.283837
\(985\) 38.6023 1.22997
\(986\) 47.9861 1.52819
\(987\) 0 0
\(988\) −8.19389 −0.260682
\(989\) 5.33912 0.169774
\(990\) −9.97942 −0.317167
\(991\) 43.5902 1.38469 0.692345 0.721567i \(-0.256578\pi\)
0.692345 + 0.721567i \(0.256578\pi\)
\(992\) −21.4386 −0.680677
\(993\) 13.8267 0.438777
\(994\) 0 0
\(995\) 35.9861 1.14084
\(996\) 27.1766 0.861125
\(997\) −57.8577 −1.83237 −0.916186 0.400753i \(-0.868749\pi\)
−0.916186 + 0.400753i \(0.868749\pi\)
\(998\) 101.580 3.21546
\(999\) −10.4750 −0.331414
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1911.2.a.s.1.1 4
3.2 odd 2 5733.2.a.bf.1.4 4
7.6 odd 2 273.2.a.e.1.1 4
21.20 even 2 819.2.a.k.1.4 4
28.27 even 2 4368.2.a.br.1.2 4
35.34 odd 2 6825.2.a.bg.1.4 4
91.90 odd 2 3549.2.a.w.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.a.e.1.1 4 7.6 odd 2
819.2.a.k.1.4 4 21.20 even 2
1911.2.a.s.1.1 4 1.1 even 1 trivial
3549.2.a.w.1.4 4 91.90 odd 2
4368.2.a.br.1.2 4 28.27 even 2
5733.2.a.bf.1.4 4 3.2 odd 2
6825.2.a.bg.1.4 4 35.34 odd 2