Properties

Label 1911.2.a.o
Level $1911$
Weight $2$
Character orbit 1911.a
Self dual yes
Analytic conductor $15.259$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1911,2,Mod(1,1911)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1911, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1911.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.2594118263\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - q^{3} + \beta_{2} q^{4} + (\beta_1 + 1) q^{5} - \beta_1 q^{6} + ( - \beta_1 + 1) q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} - q^{3} + \beta_{2} q^{4} + (\beta_1 + 1) q^{5} - \beta_1 q^{6} + ( - \beta_1 + 1) q^{8} + q^{9} + (\beta_{2} + \beta_1 + 2) q^{10} + ( - \beta_{2} + \beta_1 - 1) q^{11} - \beta_{2} q^{12} + q^{13} + ( - \beta_1 - 1) q^{15} + ( - 3 \beta_{2} + \beta_1 - 2) q^{16} + (\beta_{2} + 3) q^{17} + \beta_1 q^{18} + (2 \beta_1 + 1) q^{19} + (\beta_{2} + \beta_1 + 1) q^{20} + (\beta_{2} - 2 \beta_1 + 1) q^{22} + (5 \beta_{2} - 4 \beta_1) q^{23} + (\beta_1 - 1) q^{24} + (\beta_{2} + 2 \beta_1 - 2) q^{25} + \beta_1 q^{26} - q^{27} + ( - 4 \beta_{2} + 5 \beta_1 + 2) q^{29} + ( - \beta_{2} - \beta_1 - 2) q^{30} + (2 \beta_{2} - \beta_1 + 4) q^{31} + (\beta_{2} - 3 \beta_1 - 3) q^{32} + (\beta_{2} - \beta_1 + 1) q^{33} + (4 \beta_1 + 1) q^{34} + \beta_{2} q^{36} + (\beta_{2} - 1) q^{37} + (2 \beta_{2} + \beta_1 + 4) q^{38} - q^{39} + ( - \beta_{2} - 1) q^{40} + 3 \beta_1 q^{41} + ( - 3 \beta_{2} + 2 \beta_1 - 2) q^{43} - q^{44} + (\beta_1 + 1) q^{45} + ( - 4 \beta_{2} + 5 \beta_1 - 3) q^{46} + (4 \beta_{2} - 4 \beta_1 + 2) q^{47} + (3 \beta_{2} - \beta_1 + 2) q^{48} + (2 \beta_{2} - \beta_1 + 5) q^{50} + ( - \beta_{2} - 3) q^{51} + \beta_{2} q^{52} + (\beta_{2} - \beta_1 - 1) q^{53} - \beta_1 q^{54} - \beta_1 q^{55} + ( - 2 \beta_1 - 1) q^{57} + (5 \beta_{2} - 2 \beta_1 + 6) q^{58} + ( - 8 \beta_{2} - \beta_1 - 1) q^{59} + ( - \beta_{2} - \beta_1 - 1) q^{60} + ( - 3 \beta_{2} + 8 \beta_1 + 5) q^{61} + ( - \beta_{2} + 6 \beta_1) q^{62} + (3 \beta_{2} - 4 \beta_1 - 1) q^{64} + (\beta_1 + 1) q^{65} + ( - \beta_{2} + 2 \beta_1 - 1) q^{66} + ( - 5 \beta_{2} + 5 \beta_1 - 3) q^{67} + (2 \beta_{2} + \beta_1 + 2) q^{68} + ( - 5 \beta_{2} + 4 \beta_1) q^{69} + (6 \beta_{2} - \beta_1 + 7) q^{71} + ( - \beta_1 + 1) q^{72} + ( - 6 \beta_{2} - \beta_1) q^{73} + q^{74} + ( - \beta_{2} - 2 \beta_1 + 2) q^{75} + (\beta_{2} + 2 \beta_1 + 2) q^{76} - \beta_1 q^{78} + ( - 6 \beta_{2} + \beta_1 - 8) q^{79} + ( - 2 \beta_{2} - 4 \beta_1 - 3) q^{80} + q^{81} + (3 \beta_{2} + 6) q^{82} + ( - \beta_{2} + \beta_1 - 4) q^{83} + (\beta_{2} + 4 \beta_1 + 4) q^{85} + (2 \beta_{2} - 5 \beta_1 + 1) q^{86} + (4 \beta_{2} - 5 \beta_1 - 2) q^{87} + ( - 2 \beta_{2} + 3 \beta_1 - 2) q^{88} + ( - 3 \beta_{2} - \beta_1 + 5) q^{89} + (\beta_{2} + \beta_1 + 2) q^{90} + ( - 5 \beta_{2} + \beta_1 + 6) q^{92} + ( - 2 \beta_{2} + \beta_1 - 4) q^{93} + ( - 4 \beta_{2} + 6 \beta_1 - 4) q^{94} + (2 \beta_{2} + 3 \beta_1 + 5) q^{95} + ( - \beta_{2} + 3 \beta_1 + 3) q^{96} + ( - \beta_{2} - 4 \beta_1 + 7) q^{97} + ( - \beta_{2} + \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 3 q^{5} + 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{3} + 3 q^{5} + 3 q^{8} + 3 q^{9} + 6 q^{10} - 3 q^{11} + 3 q^{13} - 3 q^{15} - 6 q^{16} + 9 q^{17} + 3 q^{19} + 3 q^{20} + 3 q^{22} - 3 q^{24} - 6 q^{25} - 3 q^{27} + 6 q^{29} - 6 q^{30} + 12 q^{31} - 9 q^{32} + 3 q^{33} + 3 q^{34} - 3 q^{37} + 12 q^{38} - 3 q^{39} - 3 q^{40} - 6 q^{43} - 3 q^{44} + 3 q^{45} - 9 q^{46} + 6 q^{47} + 6 q^{48} + 15 q^{50} - 9 q^{51} - 3 q^{53} - 3 q^{57} + 18 q^{58} - 3 q^{59} - 3 q^{60} + 15 q^{61} - 3 q^{64} + 3 q^{65} - 3 q^{66} - 9 q^{67} + 6 q^{68} + 21 q^{71} + 3 q^{72} + 3 q^{74} + 6 q^{75} + 6 q^{76} - 24 q^{79} - 9 q^{80} + 3 q^{81} + 18 q^{82} - 12 q^{83} + 12 q^{85} + 3 q^{86} - 6 q^{87} - 6 q^{88} + 15 q^{89} + 6 q^{90} + 18 q^{92} - 12 q^{93} - 12 q^{94} + 15 q^{95} + 9 q^{96} + 21 q^{97} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.53209
−0.347296
1.87939
−1.53209 −1.00000 0.347296 −0.532089 1.53209 0 2.53209 1.00000 0.815207
1.2 −0.347296 −1.00000 −1.87939 0.652704 0.347296 0 1.34730 1.00000 −0.226682
1.3 1.87939 −1.00000 1.53209 2.87939 −1.87939 0 −0.879385 1.00000 5.41147
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(7\) \(1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.2.a.o 3
3.b odd 2 1 5733.2.a.y 3
7.b odd 2 1 1911.2.a.p 3
7.c even 3 2 273.2.i.b 6
21.c even 2 1 5733.2.a.z 3
21.h odd 6 2 819.2.j.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.2.i.b 6 7.c even 3 2
819.2.j.e 6 21.h odd 6 2
1911.2.a.o 3 1.a even 1 1 trivial
1911.2.a.p 3 7.b odd 2 1
5733.2.a.y 3 3.b odd 2 1
5733.2.a.z 3 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1911))\):

\( T_{2}^{3} - 3T_{2} - 1 \) Copy content Toggle raw display
\( T_{5}^{3} - 3T_{5}^{2} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 3T - 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 3T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 3T^{2} - 1 \) Copy content Toggle raw display
$13$ \( (T - 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 9 T^{2} + \cdots - 17 \) Copy content Toggle raw display
$19$ \( T^{3} - 3 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$23$ \( T^{3} - 63T + 9 \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} + \cdots + 289 \) Copy content Toggle raw display
$31$ \( T^{3} - 12 T^{2} + \cdots - 19 \) Copy content Toggle raw display
$37$ \( T^{3} + 3T^{2} - 1 \) Copy content Toggle raw display
$41$ \( T^{3} - 27T - 27 \) Copy content Toggle raw display
$43$ \( T^{3} + 6 T^{2} + \cdots - 51 \) Copy content Toggle raw display
$47$ \( T^{3} - 6 T^{2} + \cdots + 24 \) Copy content Toggle raw display
$53$ \( T^{3} + 3T^{2} - 3 \) Copy content Toggle raw display
$59$ \( T^{3} + 3 T^{2} + \cdots - 489 \) Copy content Toggle raw display
$61$ \( T^{3} - 15 T^{2} + \cdots + 1007 \) Copy content Toggle raw display
$67$ \( T^{3} + 9 T^{2} + \cdots - 73 \) Copy content Toggle raw display
$71$ \( T^{3} - 21 T^{2} + \cdots + 597 \) Copy content Toggle raw display
$73$ \( T^{3} - 129T - 71 \) Copy content Toggle raw display
$79$ \( T^{3} + 24 T^{2} + \cdots - 521 \) Copy content Toggle raw display
$83$ \( T^{3} + 12 T^{2} + \cdots + 53 \) Copy content Toggle raw display
$89$ \( T^{3} - 15 T^{2} + \cdots + 89 \) Copy content Toggle raw display
$97$ \( T^{3} - 21 T^{2} + \cdots + 269 \) Copy content Toggle raw display
show more
show less