Properties

Label 1911.2.a.f
Level $1911$
Weight $2$
Character orbit 1911.a
Self dual yes
Analytic conductor $15.259$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(15.2594118263\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} - q^{4} - 2 q^{5} + q^{6} - 3 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{3} - q^{4} - 2 q^{5} + q^{6} - 3 q^{8} + q^{9} - 2 q^{10} + 4 q^{11} - q^{12} - q^{13} - 2 q^{15} - q^{16} - 2 q^{17} + q^{18} + 2 q^{20} + 4 q^{22} - 3 q^{24} - q^{25} - q^{26} + q^{27} - 10 q^{29} - 2 q^{30} - 4 q^{31} + 5 q^{32} + 4 q^{33} - 2 q^{34} - q^{36} - 2 q^{37} - q^{39} + 6 q^{40} - 6 q^{41} - 12 q^{43} - 4 q^{44} - 2 q^{45} - q^{48} - q^{50} - 2 q^{51} + q^{52} + 6 q^{53} + q^{54} - 8 q^{55} - 10 q^{58} - 12 q^{59} + 2 q^{60} + 2 q^{61} - 4 q^{62} + 7 q^{64} + 2 q^{65} + 4 q^{66} - 8 q^{67} + 2 q^{68} - 3 q^{72} - 2 q^{73} - 2 q^{74} - q^{75} - q^{78} + 8 q^{79} + 2 q^{80} + q^{81} - 6 q^{82} - 4 q^{83} + 4 q^{85} - 12 q^{86} - 10 q^{87} - 12 q^{88} + 2 q^{89} - 2 q^{90} - 4 q^{93} + 5 q^{96} - 10 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 −1.00000 −2.00000 1.00000 0 −3.00000 1.00000 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.2.a.f 1
3.b odd 2 1 5733.2.a.e 1
7.b odd 2 1 39.2.a.a 1
21.c even 2 1 117.2.a.a 1
28.d even 2 1 624.2.a.i 1
35.c odd 2 1 975.2.a.f 1
35.f even 4 2 975.2.c.f 2
56.e even 2 1 2496.2.a.e 1
56.h odd 2 1 2496.2.a.q 1
63.l odd 6 2 1053.2.e.b 2
63.o even 6 2 1053.2.e.d 2
77.b even 2 1 4719.2.a.c 1
84.h odd 2 1 1872.2.a.h 1
91.b odd 2 1 507.2.a.a 1
91.i even 4 2 507.2.b.a 2
91.n odd 6 2 507.2.e.a 2
91.t odd 6 2 507.2.e.b 2
91.bc even 12 4 507.2.j.e 4
105.g even 2 1 2925.2.a.p 1
105.k odd 4 2 2925.2.c.e 2
168.e odd 2 1 7488.2.a.by 1
168.i even 2 1 7488.2.a.bl 1
273.g even 2 1 1521.2.a.e 1
273.o odd 4 2 1521.2.b.b 2
364.h even 2 1 8112.2.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.2.a.a 1 7.b odd 2 1
117.2.a.a 1 21.c even 2 1
507.2.a.a 1 91.b odd 2 1
507.2.b.a 2 91.i even 4 2
507.2.e.a 2 91.n odd 6 2
507.2.e.b 2 91.t odd 6 2
507.2.j.e 4 91.bc even 12 4
624.2.a.i 1 28.d even 2 1
975.2.a.f 1 35.c odd 2 1
975.2.c.f 2 35.f even 4 2
1053.2.e.b 2 63.l odd 6 2
1053.2.e.d 2 63.o even 6 2
1521.2.a.e 1 273.g even 2 1
1521.2.b.b 2 273.o odd 4 2
1872.2.a.h 1 84.h odd 2 1
1911.2.a.f 1 1.a even 1 1 trivial
2496.2.a.e 1 56.e even 2 1
2496.2.a.q 1 56.h odd 2 1
2925.2.a.p 1 105.g even 2 1
2925.2.c.e 2 105.k odd 4 2
4719.2.a.c 1 77.b even 2 1
5733.2.a.e 1 3.b odd 2 1
7488.2.a.bl 1 168.i even 2 1
7488.2.a.by 1 168.e odd 2 1
8112.2.a.s 1 364.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1911))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{5} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 2 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 4 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 10 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T + 12 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T + 8 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T - 8 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T - 2 \) Copy content Toggle raw display
$97$ \( T + 10 \) Copy content Toggle raw display
show more
show less