Properties

Label 1911.1.w.c
Level $1911$
Weight $1$
Character orbit 1911.w
Analytic conductor $0.954$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -39
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1911,1,Mod(116,1911)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1911, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1911.116");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1911.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.953713239142\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.24843.1
Artin image: $C_6\times D_8$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{48} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + \beta_{2} q^{3} + \beta_{2} q^{4} + \beta_1 q^{5} - \beta_{3} q^{6} + ( - \beta_{2} - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + \beta_{2} q^{3} + \beta_{2} q^{4} + \beta_1 q^{5} - \beta_{3} q^{6} + ( - \beta_{2} - 1) q^{9} - 2 \beta_{2} q^{10} + (\beta_{3} + \beta_1) q^{11} + ( - \beta_{2} - 1) q^{12} + q^{13} + \beta_{3} q^{15} + (\beta_{2} + 1) q^{16} + (\beta_{3} + \beta_1) q^{18} + \beta_{3} q^{20} + 2 q^{22} + \beta_{2} q^{25} - \beta_1 q^{26} + q^{27} + (2 \beta_{2} + 2) q^{30} + ( - \beta_{3} - \beta_1) q^{32} - \beta_1 q^{33} + q^{36} + \beta_{2} q^{39} + \beta_{3} q^{41} - 2 q^{43} - \beta_1 q^{44} + ( - \beta_{3} - \beta_1) q^{45} + \beta_1 q^{47} - q^{48} - \beta_{3} q^{50} + \beta_{2} q^{52} - \beta_1 q^{54} - 2 q^{55} + (\beta_{3} + \beta_1) q^{59} + ( - \beta_{3} - \beta_1) q^{60} + (2 \beta_{2} + 2) q^{61} - q^{64} + \beta_1 q^{65} + 2 \beta_{2} q^{66} + \beta_{3} q^{71} + ( - \beta_{2} - 1) q^{75} - \beta_{3} q^{78} + (\beta_{3} + \beta_1) q^{80} + \beta_{2} q^{81} + (2 \beta_{2} + 2) q^{82} - \beta_{3} q^{83} + 2 \beta_1 q^{86} - \beta_1 q^{89} - 2 q^{90} - 2 \beta_{2} q^{94} + \beta_1 q^{96} - \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{4} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{3} - 2 q^{4} - 2 q^{9} + 4 q^{10} - 2 q^{12} + 4 q^{13} + 2 q^{16} + 8 q^{22} - 2 q^{25} + 4 q^{27} + 4 q^{30} + 4 q^{36} - 2 q^{39} - 8 q^{43} - 4 q^{48} - 2 q^{52} - 8 q^{55} + 4 q^{61} - 4 q^{64} - 4 q^{66} - 2 q^{75} - 2 q^{81} + 4 q^{82} - 8 q^{90} + 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1911\mathbb{Z}\right)^\times\).

\(n\) \(638\) \(1471\) \(1522\)
\(\chi(n)\) \(-1\) \(-1\) \(-1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
116.1
0.707107 + 1.22474i
−0.707107 1.22474i
0.707107 1.22474i
−0.707107 + 1.22474i
−0.707107 1.22474i −0.500000 + 0.866025i −0.500000 + 0.866025i 0.707107 + 1.22474i 1.41421 0 0 −0.500000 0.866025i 1.00000 1.73205i
116.2 0.707107 + 1.22474i −0.500000 + 0.866025i −0.500000 + 0.866025i −0.707107 1.22474i −1.41421 0 0 −0.500000 0.866025i 1.00000 1.73205i
1598.1 −0.707107 + 1.22474i −0.500000 0.866025i −0.500000 0.866025i 0.707107 1.22474i 1.41421 0 0 −0.500000 + 0.866025i 1.00000 + 1.73205i
1598.2 0.707107 1.22474i −0.500000 0.866025i −0.500000 0.866025i −0.707107 + 1.22474i −1.41421 0 0 −0.500000 + 0.866025i 1.00000 + 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
39.d odd 2 1 CM by \(\Q(\sqrt{-39}) \)
3.b odd 2 1 inner
7.c even 3 1 inner
13.b even 2 1 inner
21.h odd 6 1 inner
91.r even 6 1 inner
273.w odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.1.w.c 4
3.b odd 2 1 inner 1911.1.w.c 4
7.b odd 2 1 1911.1.w.d 4
7.c even 3 1 1911.1.h.c yes 2
7.c even 3 1 inner 1911.1.w.c 4
7.d odd 6 1 1911.1.h.b 2
7.d odd 6 1 1911.1.w.d 4
13.b even 2 1 inner 1911.1.w.c 4
21.c even 2 1 1911.1.w.d 4
21.g even 6 1 1911.1.h.b 2
21.g even 6 1 1911.1.w.d 4
21.h odd 6 1 1911.1.h.c yes 2
21.h odd 6 1 inner 1911.1.w.c 4
39.d odd 2 1 CM 1911.1.w.c 4
91.b odd 2 1 1911.1.w.d 4
91.r even 6 1 1911.1.h.c yes 2
91.r even 6 1 inner 1911.1.w.c 4
91.s odd 6 1 1911.1.h.b 2
91.s odd 6 1 1911.1.w.d 4
273.g even 2 1 1911.1.w.d 4
273.w odd 6 1 1911.1.h.c yes 2
273.w odd 6 1 inner 1911.1.w.c 4
273.ba even 6 1 1911.1.h.b 2
273.ba even 6 1 1911.1.w.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1911.1.h.b 2 7.d odd 6 1
1911.1.h.b 2 21.g even 6 1
1911.1.h.b 2 91.s odd 6 1
1911.1.h.b 2 273.ba even 6 1
1911.1.h.c yes 2 7.c even 3 1
1911.1.h.c yes 2 21.h odd 6 1
1911.1.h.c yes 2 91.r even 6 1
1911.1.h.c yes 2 273.w odd 6 1
1911.1.w.c 4 1.a even 1 1 trivial
1911.1.w.c 4 3.b odd 2 1 inner
1911.1.w.c 4 7.c even 3 1 inner
1911.1.w.c 4 13.b even 2 1 inner
1911.1.w.c 4 21.h odd 6 1 inner
1911.1.w.c 4 39.d odd 2 1 CM
1911.1.w.c 4 91.r even 6 1 inner
1911.1.w.c 4 273.w odd 6 1 inner
1911.1.w.d 4 7.b odd 2 1
1911.1.w.d 4 7.d odd 6 1
1911.1.w.d 4 21.c even 2 1
1911.1.w.d 4 21.g even 6 1
1911.1.w.d 4 91.b odd 2 1
1911.1.w.d 4 91.s odd 6 1
1911.1.w.d 4 273.g even 2 1
1911.1.w.d 4 273.ba even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1911, [\chi])\):

\( T_{2}^{4} + 2T_{2}^{2} + 4 \) Copy content Toggle raw display
\( T_{61}^{2} - 2T_{61} + 4 \) Copy content Toggle raw display
\( T_{199}^{2} + 2T_{199} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$43$ \( (T + 2)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$61$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less