Properties

Label 1911.1.be.c
Level $1911$
Weight $1$
Character orbit 1911.be
Analytic conductor $0.954$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1911.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.953713239142\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.74529.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{12}^{5} q^{2} -\zeta_{12}^{5} q^{3} -\zeta_{12}^{3} q^{5} + \zeta_{12}^{4} q^{6} -\zeta_{12}^{3} q^{8} -\zeta_{12}^{4} q^{9} +O(q^{10})\) \( q + \zeta_{12}^{5} q^{2} -\zeta_{12}^{5} q^{3} -\zeta_{12}^{3} q^{5} + \zeta_{12}^{4} q^{6} -\zeta_{12}^{3} q^{8} -\zeta_{12}^{4} q^{9} + \zeta_{12}^{2} q^{10} - q^{13} -\zeta_{12}^{2} q^{15} + \zeta_{12}^{2} q^{16} -\zeta_{12} q^{17} + \zeta_{12}^{3} q^{18} -\zeta_{12}^{5} q^{23} -\zeta_{12}^{2} q^{24} -\zeta_{12}^{5} q^{26} -\zeta_{12}^{3} q^{27} -\zeta_{12}^{5} q^{29} + \zeta_{12} q^{30} - q^{31} + q^{34} -\zeta_{12}^{2} q^{37} + \zeta_{12}^{5} q^{39} - q^{40} + \zeta_{12}^{5} q^{41} + \zeta_{12}^{4} q^{43} -\zeta_{12} q^{45} + \zeta_{12}^{4} q^{46} -\zeta_{12}^{3} q^{47} + \zeta_{12} q^{48} - q^{51} -\zeta_{12}^{3} q^{53} + \zeta_{12}^{2} q^{54} + \zeta_{12}^{4} q^{58} + \zeta_{12} q^{59} -\zeta_{12}^{5} q^{62} - q^{64} + \zeta_{12}^{3} q^{65} -\zeta_{12}^{4} q^{69} -\zeta_{12} q^{71} -\zeta_{12} q^{72} + q^{73} + \zeta_{12} q^{74} -\zeta_{12}^{4} q^{78} + q^{79} -\zeta_{12}^{5} q^{80} -\zeta_{12}^{2} q^{81} -\zeta_{12}^{4} q^{82} + \zeta_{12}^{4} q^{85} -\zeta_{12}^{3} q^{86} -\zeta_{12}^{4} q^{87} + \zeta_{12}^{5} q^{89} + q^{90} + \zeta_{12}^{5} q^{93} + \zeta_{12}^{2} q^{94} -\zeta_{12}^{4} q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{6} + 2 q^{9} + O(q^{10}) \) \( 4 q - 2 q^{6} + 2 q^{9} + 2 q^{10} - 4 q^{13} - 2 q^{15} + 2 q^{16} - 2 q^{24} - 4 q^{31} + 4 q^{34} - 2 q^{37} - 4 q^{40} - 2 q^{43} - 2 q^{46} - 4 q^{51} + 2 q^{54} - 2 q^{58} - 4 q^{64} + 2 q^{69} + 4 q^{73} + 2 q^{78} + 4 q^{79} - 2 q^{81} + 2 q^{82} - 2 q^{85} + 2 q^{87} + 4 q^{90} + 2 q^{94} + 2 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1911\mathbb{Z}\right)^\times\).

\(n\) \(638\) \(1471\) \(1522\)
\(\chi(n)\) \(-1\) \(\zeta_{12}^{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
932.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 0.500000i 0.866025 + 0.500000i 0 1.00000i −0.500000 0.866025i 0 1.00000i 0.500000 + 0.866025i 0.500000 0.866025i
932.2 0.866025 + 0.500000i −0.866025 0.500000i 0 1.00000i −0.500000 0.866025i 0 1.00000i 0.500000 + 0.866025i 0.500000 0.866025i
1667.1 −0.866025 + 0.500000i 0.866025 0.500000i 0 1.00000i −0.500000 + 0.866025i 0 1.00000i 0.500000 0.866025i 0.500000 + 0.866025i
1667.2 0.866025 0.500000i −0.866025 + 0.500000i 0 1.00000i −0.500000 + 0.866025i 0 1.00000i 0.500000 0.866025i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.c even 3 1 inner
39.i odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.1.be.c 4
3.b odd 2 1 inner 1911.1.be.c 4
7.b odd 2 1 1911.1.be.d 4
7.c even 3 1 273.1.s.b 4
7.c even 3 1 273.1.bm.b yes 4
7.d odd 6 1 1911.1.s.b 4
7.d odd 6 1 1911.1.bm.b 4
13.c even 3 1 inner 1911.1.be.c 4
21.c even 2 1 1911.1.be.d 4
21.g even 6 1 1911.1.s.b 4
21.g even 6 1 1911.1.bm.b 4
21.h odd 6 1 273.1.s.b 4
21.h odd 6 1 273.1.bm.b yes 4
39.i odd 6 1 inner 1911.1.be.c 4
91.g even 3 1 273.1.s.b 4
91.g even 3 1 3549.1.bk.d 4
91.h even 3 1 273.1.bm.b yes 4
91.h even 3 1 3549.1.bk.d 4
91.k even 6 1 3549.1.bk.c 4
91.k even 6 1 3549.1.bm.c 4
91.m odd 6 1 1911.1.s.b 4
91.n odd 6 1 1911.1.be.d 4
91.r even 6 1 3549.1.s.b 4
91.r even 6 1 3549.1.bm.c 4
91.u even 6 1 3549.1.s.b 4
91.u even 6 1 3549.1.bk.c 4
91.v odd 6 1 1911.1.bm.b 4
91.x odd 12 1 3549.1.w.c 4
91.x odd 12 1 3549.1.w.e 4
91.x odd 12 1 3549.1.x.b 4
91.x odd 12 1 3549.1.x.d 4
91.z odd 12 1 3549.1.x.b 4
91.z odd 12 1 3549.1.x.d 4
91.z odd 12 1 3549.1.bp.b 4
91.z odd 12 1 3549.1.bp.d 4
91.bd odd 12 1 3549.1.w.c 4
91.bd odd 12 1 3549.1.w.e 4
91.bd odd 12 1 3549.1.bp.b 4
91.bd odd 12 1 3549.1.bp.d 4
273.r even 6 1 1911.1.bm.b 4
273.s odd 6 1 273.1.bm.b yes 4
273.s odd 6 1 3549.1.bk.d 4
273.w odd 6 1 3549.1.s.b 4
273.w odd 6 1 3549.1.bm.c 4
273.x odd 6 1 3549.1.s.b 4
273.x odd 6 1 3549.1.bk.c 4
273.bf even 6 1 1911.1.s.b 4
273.bm odd 6 1 273.1.s.b 4
273.bm odd 6 1 3549.1.bk.d 4
273.bn even 6 1 1911.1.be.d 4
273.bp odd 6 1 3549.1.bk.c 4
273.bp odd 6 1 3549.1.bm.c 4
273.bv even 12 1 3549.1.w.c 4
273.bv even 12 1 3549.1.w.e 4
273.bv even 12 1 3549.1.x.b 4
273.bv even 12 1 3549.1.x.d 4
273.bw even 12 1 3549.1.w.c 4
273.bw even 12 1 3549.1.w.e 4
273.bw even 12 1 3549.1.bp.b 4
273.bw even 12 1 3549.1.bp.d 4
273.cd even 12 1 3549.1.x.b 4
273.cd even 12 1 3549.1.x.d 4
273.cd even 12 1 3549.1.bp.b 4
273.cd even 12 1 3549.1.bp.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.1.s.b 4 7.c even 3 1
273.1.s.b 4 21.h odd 6 1
273.1.s.b 4 91.g even 3 1
273.1.s.b 4 273.bm odd 6 1
273.1.bm.b yes 4 7.c even 3 1
273.1.bm.b yes 4 21.h odd 6 1
273.1.bm.b yes 4 91.h even 3 1
273.1.bm.b yes 4 273.s odd 6 1
1911.1.s.b 4 7.d odd 6 1
1911.1.s.b 4 21.g even 6 1
1911.1.s.b 4 91.m odd 6 1
1911.1.s.b 4 273.bf even 6 1
1911.1.be.c 4 1.a even 1 1 trivial
1911.1.be.c 4 3.b odd 2 1 inner
1911.1.be.c 4 13.c even 3 1 inner
1911.1.be.c 4 39.i odd 6 1 inner
1911.1.be.d 4 7.b odd 2 1
1911.1.be.d 4 21.c even 2 1
1911.1.be.d 4 91.n odd 6 1
1911.1.be.d 4 273.bn even 6 1
1911.1.bm.b 4 7.d odd 6 1
1911.1.bm.b 4 21.g even 6 1
1911.1.bm.b 4 91.v odd 6 1
1911.1.bm.b 4 273.r even 6 1
3549.1.s.b 4 91.r even 6 1
3549.1.s.b 4 91.u even 6 1
3549.1.s.b 4 273.w odd 6 1
3549.1.s.b 4 273.x odd 6 1
3549.1.w.c 4 91.x odd 12 1
3549.1.w.c 4 91.bd odd 12 1
3549.1.w.c 4 273.bv even 12 1
3549.1.w.c 4 273.bw even 12 1
3549.1.w.e 4 91.x odd 12 1
3549.1.w.e 4 91.bd odd 12 1
3549.1.w.e 4 273.bv even 12 1
3549.1.w.e 4 273.bw even 12 1
3549.1.x.b 4 91.x odd 12 1
3549.1.x.b 4 91.z odd 12 1
3549.1.x.b 4 273.bv even 12 1
3549.1.x.b 4 273.cd even 12 1
3549.1.x.d 4 91.x odd 12 1
3549.1.x.d 4 91.z odd 12 1
3549.1.x.d 4 273.bv even 12 1
3549.1.x.d 4 273.cd even 12 1
3549.1.bk.c 4 91.k even 6 1
3549.1.bk.c 4 91.u even 6 1
3549.1.bk.c 4 273.x odd 6 1
3549.1.bk.c 4 273.bp odd 6 1
3549.1.bk.d 4 91.g even 3 1
3549.1.bk.d 4 91.h even 3 1
3549.1.bk.d 4 273.s odd 6 1
3549.1.bk.d 4 273.bm odd 6 1
3549.1.bm.c 4 91.k even 6 1
3549.1.bm.c 4 91.r even 6 1
3549.1.bm.c 4 273.w odd 6 1
3549.1.bm.c 4 273.bp odd 6 1
3549.1.bp.b 4 91.z odd 12 1
3549.1.bp.b 4 91.bd odd 12 1
3549.1.bp.b 4 273.bw even 12 1
3549.1.bp.b 4 273.cd even 12 1
3549.1.bp.d 4 91.z odd 12 1
3549.1.bp.d 4 91.bd odd 12 1
3549.1.bp.d 4 273.bw even 12 1
3549.1.bp.d 4 273.cd even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1911, [\chi])\):

\( T_{2}^{4} - T_{2}^{2} + 1 \)
\( T_{19} \)
\( T_{31} + 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{2} + T^{4} \)
$3$ \( 1 - T^{2} + T^{4} \)
$5$ \( ( 1 + T^{2} )^{2} \)
$7$ \( T^{4} \)
$11$ \( T^{4} \)
$13$ \( ( 1 + T )^{4} \)
$17$ \( 1 - T^{2} + T^{4} \)
$19$ \( T^{4} \)
$23$ \( 1 - T^{2} + T^{4} \)
$29$ \( 1 - T^{2} + T^{4} \)
$31$ \( ( 1 + T )^{4} \)
$37$ \( ( 1 + T + T^{2} )^{2} \)
$41$ \( 1 - T^{2} + T^{4} \)
$43$ \( ( 1 + T + T^{2} )^{2} \)
$47$ \( ( 1 + T^{2} )^{2} \)
$53$ \( ( 1 + T^{2} )^{2} \)
$59$ \( 1 - T^{2} + T^{4} \)
$61$ \( T^{4} \)
$67$ \( T^{4} \)
$71$ \( 1 - T^{2} + T^{4} \)
$73$ \( ( -1 + T )^{4} \)
$79$ \( ( -1 + T )^{4} \)
$83$ \( T^{4} \)
$89$ \( 1 - T^{2} + T^{4} \)
$97$ \( ( 1 - T + T^{2} )^{2} \)
show more
show less