Properties

Label 1911.1.bc.b
Level $1911$
Weight $1$
Character orbit 1911.bc
Analytic conductor $0.954$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1911.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.953713239142\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.24069811311.4

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{3} -\zeta_{6}^{2} q^{4} + \zeta_{6}^{2} q^{9} +O(q^{10})\) \( q + \zeta_{6} q^{3} -\zeta_{6}^{2} q^{4} + \zeta_{6}^{2} q^{9} + q^{12} + \zeta_{6} q^{13} -\zeta_{6} q^{16} + ( 1 + \zeta_{6} ) q^{19} - q^{25} - q^{27} + \zeta_{6} q^{36} + ( 1 - \zeta_{6}^{2} ) q^{37} + \zeta_{6}^{2} q^{39} -\zeta_{6}^{2} q^{43} -\zeta_{6}^{2} q^{48} + q^{52} + ( \zeta_{6} + \zeta_{6}^{2} ) q^{57} + \zeta_{6}^{2} q^{61} - q^{64} + ( -\zeta_{6} - \zeta_{6}^{2} ) q^{73} -\zeta_{6} q^{75} + ( 1 - \zeta_{6}^{2} ) q^{76} -2 q^{79} -\zeta_{6} q^{81} + ( -1 - \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + q^{4} - q^{9} + O(q^{10}) \) \( 2 q + q^{3} + q^{4} - q^{9} + 2 q^{12} + q^{13} - q^{16} + 3 q^{19} - 2 q^{25} - 2 q^{27} + q^{36} + 3 q^{37} - q^{39} + q^{43} + q^{48} + 2 q^{52} - q^{61} - 2 q^{64} - q^{75} + 3 q^{76} - 4 q^{79} - q^{81} - 3 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1911\mathbb{Z}\right)^\times\).

\(n\) \(638\) \(1471\) \(1522\)
\(\chi(n)\) \(-1\) \(-\zeta_{6}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
491.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 + 0.866025i 0.500000 0.866025i 0 0 0 0 −0.500000 + 0.866025i 0
1226.1 0 0.500000 0.866025i 0.500000 + 0.866025i 0 0 0 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
13.e even 6 1 inner
39.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.1.bc.b 2
3.b odd 2 1 CM 1911.1.bc.b 2
7.b odd 2 1 1911.1.bc.a 2
7.c even 3 1 273.1.x.a 2
7.c even 3 1 273.1.bp.a yes 2
7.d odd 6 1 1911.1.x.a 2
7.d odd 6 1 1911.1.bp.a 2
13.e even 6 1 inner 1911.1.bc.b 2
21.c even 2 1 1911.1.bc.a 2
21.g even 6 1 1911.1.x.a 2
21.g even 6 1 1911.1.bp.a 2
21.h odd 6 1 273.1.x.a 2
21.h odd 6 1 273.1.bp.a yes 2
39.h odd 6 1 inner 1911.1.bc.b 2
91.g even 3 1 3549.1.w.a 2
91.g even 3 1 3549.1.bp.a 2
91.h even 3 1 3549.1.w.b 2
91.h even 3 1 3549.1.x.a 2
91.k even 6 1 273.1.x.a 2
91.k even 6 1 3549.1.w.a 2
91.l odd 6 1 1911.1.x.a 2
91.p odd 6 1 1911.1.bp.a 2
91.r even 6 1 3549.1.x.a 2
91.r even 6 1 3549.1.bp.a 2
91.t odd 6 1 1911.1.bc.a 2
91.u even 6 1 273.1.bp.a yes 2
91.u even 6 1 3549.1.w.b 2
91.x odd 12 2 3549.1.bk.e 4
91.x odd 12 2 3549.1.bm.b 4
91.z odd 12 2 3549.1.s.c 4
91.z odd 12 2 3549.1.bm.b 4
91.bd odd 12 2 3549.1.s.c 4
91.bd odd 12 2 3549.1.bk.e 4
273.s odd 6 1 3549.1.w.b 2
273.s odd 6 1 3549.1.x.a 2
273.u even 6 1 1911.1.bc.a 2
273.w odd 6 1 3549.1.x.a 2
273.w odd 6 1 3549.1.bp.a 2
273.x odd 6 1 273.1.bp.a yes 2
273.x odd 6 1 3549.1.w.b 2
273.y even 6 1 1911.1.bp.a 2
273.bm odd 6 1 3549.1.w.a 2
273.bm odd 6 1 3549.1.bp.a 2
273.bp odd 6 1 273.1.x.a 2
273.bp odd 6 1 3549.1.w.a 2
273.br even 6 1 1911.1.x.a 2
273.bv even 12 2 3549.1.bk.e 4
273.bv even 12 2 3549.1.bm.b 4
273.bw even 12 2 3549.1.s.c 4
273.bw even 12 2 3549.1.bk.e 4
273.cd even 12 2 3549.1.s.c 4
273.cd even 12 2 3549.1.bm.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.1.x.a 2 7.c even 3 1
273.1.x.a 2 21.h odd 6 1
273.1.x.a 2 91.k even 6 1
273.1.x.a 2 273.bp odd 6 1
273.1.bp.a yes 2 7.c even 3 1
273.1.bp.a yes 2 21.h odd 6 1
273.1.bp.a yes 2 91.u even 6 1
273.1.bp.a yes 2 273.x odd 6 1
1911.1.x.a 2 7.d odd 6 1
1911.1.x.a 2 21.g even 6 1
1911.1.x.a 2 91.l odd 6 1
1911.1.x.a 2 273.br even 6 1
1911.1.bc.a 2 7.b odd 2 1
1911.1.bc.a 2 21.c even 2 1
1911.1.bc.a 2 91.t odd 6 1
1911.1.bc.a 2 273.u even 6 1
1911.1.bc.b 2 1.a even 1 1 trivial
1911.1.bc.b 2 3.b odd 2 1 CM
1911.1.bc.b 2 13.e even 6 1 inner
1911.1.bc.b 2 39.h odd 6 1 inner
1911.1.bp.a 2 7.d odd 6 1
1911.1.bp.a 2 21.g even 6 1
1911.1.bp.a 2 91.p odd 6 1
1911.1.bp.a 2 273.y even 6 1
3549.1.s.c 4 91.z odd 12 2
3549.1.s.c 4 91.bd odd 12 2
3549.1.s.c 4 273.bw even 12 2
3549.1.s.c 4 273.cd even 12 2
3549.1.w.a 2 91.g even 3 1
3549.1.w.a 2 91.k even 6 1
3549.1.w.a 2 273.bm odd 6 1
3549.1.w.a 2 273.bp odd 6 1
3549.1.w.b 2 91.h even 3 1
3549.1.w.b 2 91.u even 6 1
3549.1.w.b 2 273.s odd 6 1
3549.1.w.b 2 273.x odd 6 1
3549.1.x.a 2 91.h even 3 1
3549.1.x.a 2 91.r even 6 1
3549.1.x.a 2 273.s odd 6 1
3549.1.x.a 2 273.w odd 6 1
3549.1.bk.e 4 91.x odd 12 2
3549.1.bk.e 4 91.bd odd 12 2
3549.1.bk.e 4 273.bv even 12 2
3549.1.bk.e 4 273.bw even 12 2
3549.1.bm.b 4 91.x odd 12 2
3549.1.bm.b 4 91.z odd 12 2
3549.1.bm.b 4 273.bv even 12 2
3549.1.bm.b 4 273.cd even 12 2
3549.1.bp.a 2 91.g even 3 1
3549.1.bp.a 2 91.r even 6 1
3549.1.bp.a 2 273.w odd 6 1
3549.1.bp.a 2 273.bm odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{19}^{2} - 3 T_{19} + 3 \) acting on \(S_{1}^{\mathrm{new}}(1911, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 1 - T + T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( T^{2} \)
$13$ \( 1 - T + T^{2} \)
$17$ \( T^{2} \)
$19$ \( 3 - 3 T + T^{2} \)
$23$ \( T^{2} \)
$29$ \( T^{2} \)
$31$ \( T^{2} \)
$37$ \( 3 - 3 T + T^{2} \)
$41$ \( T^{2} \)
$43$ \( 1 - T + T^{2} \)
$47$ \( T^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( 1 + T + T^{2} \)
$67$ \( T^{2} \)
$71$ \( T^{2} \)
$73$ \( 3 + T^{2} \)
$79$ \( ( 2 + T )^{2} \)
$83$ \( T^{2} \)
$89$ \( T^{2} \)
$97$ \( 3 + 3 T + T^{2} \)
show more
show less