Properties

 Label 1911.1.bc.a Level $1911$ Weight $1$ Character orbit 1911.bc Analytic conductor $0.954$ Analytic rank $0$ Dimension $2$ Projective image $D_{6}$ CM discriminant -3 Inner twists $4$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1911,1,Mod(491,1911)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1911, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([3, 0, 5]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1911.491");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1911 = 3 \cdot 7^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 1911.bc (of order $$6$$, degree $$2$$, minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.953713239142$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 273) Projective image: $$D_{6}$$ Projective field: Galois closure of 6.0.24069811311.4

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q - \zeta_{6} q^{3} - \zeta_{6}^{2} q^{4} + \zeta_{6}^{2} q^{9} +O(q^{10})$$ q - z * q^3 - z^2 * q^4 + z^2 * q^9 $$q - \zeta_{6} q^{3} - \zeta_{6}^{2} q^{4} + \zeta_{6}^{2} q^{9} - q^{12} - \zeta_{6} q^{13} - \zeta_{6} q^{16} + ( - \zeta_{6} - 1) q^{19} - q^{25} + q^{27} + \zeta_{6} q^{36} + ( - \zeta_{6}^{2} + 1) q^{37} + \zeta_{6}^{2} q^{39} - \zeta_{6}^{2} q^{43} + \zeta_{6}^{2} q^{48} - q^{52} + (\zeta_{6}^{2} + \zeta_{6}) q^{57} - \zeta_{6}^{2} q^{61} - q^{64} + (\zeta_{6}^{2} + \zeta_{6}) q^{73} + \zeta_{6} q^{75} + (\zeta_{6}^{2} - 1) q^{76} - q^{79} - \zeta_{6} q^{81} + (\zeta_{6} + 1) q^{97} +O(q^{100})$$ q - z * q^3 - z^2 * q^4 + z^2 * q^9 - q^12 - z * q^13 - z * q^16 + (-z - 1) * q^19 - q^25 + q^27 + z * q^36 + (-z^2 + 1) * q^37 + z^2 * q^39 - z^2 * q^43 + z^2 * q^48 - q^52 + (z^2 + z) * q^57 - z^2 * q^61 - q^64 + (z^2 + z) * q^73 + z * q^75 + (z^2 - 1) * q^76 - q^79 - z * q^81 + (z + 1) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{3} + q^{4} - q^{9}+O(q^{10})$$ 2 * q - q^3 + q^4 - q^9 $$2 q - q^{3} + q^{4} - q^{9} - 2 q^{12} - q^{13} - q^{16} - 3 q^{19} - 2 q^{25} + 2 q^{27} + q^{36} + 3 q^{37} - q^{39} + q^{43} - q^{48} - 2 q^{52} + q^{61} - 2 q^{64} + q^{75} - 3 q^{76} - 4 q^{79} - q^{81} + 3 q^{97}+O(q^{100})$$ 2 * q - q^3 + q^4 - q^9 - 2 * q^12 - q^13 - q^16 - 3 * q^19 - 2 * q^25 + 2 * q^27 + q^36 + 3 * q^37 - q^39 + q^43 - q^48 - 2 * q^52 + q^61 - 2 * q^64 + q^75 - 3 * q^76 - 4 * q^79 - q^81 + 3 * q^97

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1911\mathbb{Z}\right)^\times$$.

 $$n$$ $$638$$ $$1471$$ $$1522$$ $$\chi(n)$$ $$-1$$ $$-\zeta_{6}^{2}$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
491.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 −0.500000 0.866025i 0.500000 0.866025i 0 0 0 0 −0.500000 + 0.866025i 0
1226.1 0 −0.500000 + 0.866025i 0.500000 + 0.866025i 0 0 0 0 −0.500000 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
13.e even 6 1 inner
39.h odd 6 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.1.bc.a 2
3.b odd 2 1 CM 1911.1.bc.a 2
7.b odd 2 1 1911.1.bc.b 2
7.c even 3 1 1911.1.x.a 2
7.c even 3 1 1911.1.bp.a 2
7.d odd 6 1 273.1.x.a 2
7.d odd 6 1 273.1.bp.a yes 2
13.e even 6 1 inner 1911.1.bc.a 2
21.c even 2 1 1911.1.bc.b 2
21.g even 6 1 273.1.x.a 2
21.g even 6 1 273.1.bp.a yes 2
21.h odd 6 1 1911.1.x.a 2
21.h odd 6 1 1911.1.bp.a 2
39.h odd 6 1 inner 1911.1.bc.a 2
91.k even 6 1 1911.1.x.a 2
91.l odd 6 1 273.1.x.a 2
91.l odd 6 1 3549.1.w.a 2
91.m odd 6 1 3549.1.w.a 2
91.m odd 6 1 3549.1.bp.a 2
91.p odd 6 1 273.1.bp.a yes 2
91.p odd 6 1 3549.1.w.b 2
91.s odd 6 1 3549.1.x.a 2
91.s odd 6 1 3549.1.bp.a 2
91.t odd 6 1 1911.1.bc.b 2
91.u even 6 1 1911.1.bp.a 2
91.v odd 6 1 3549.1.w.b 2
91.v odd 6 1 3549.1.x.a 2
91.w even 12 2 3549.1.s.c 4
91.w even 12 2 3549.1.bk.e 4
91.ba even 12 2 3549.1.bk.e 4
91.ba even 12 2 3549.1.bm.b 4
91.bb even 12 2 3549.1.s.c 4
91.bb even 12 2 3549.1.bm.b 4
273.r even 6 1 3549.1.w.b 2
273.r even 6 1 3549.1.x.a 2
273.u even 6 1 1911.1.bc.b 2
273.x odd 6 1 1911.1.bp.a 2
273.y even 6 1 273.1.bp.a yes 2
273.y even 6 1 3549.1.w.b 2
273.ba even 6 1 3549.1.x.a 2
273.ba even 6 1 3549.1.bp.a 2
273.bf even 6 1 3549.1.w.a 2
273.bf even 6 1 3549.1.bp.a 2
273.bp odd 6 1 1911.1.x.a 2
273.br even 6 1 273.1.x.a 2
273.br even 6 1 3549.1.w.a 2
273.bs odd 12 2 3549.1.bk.e 4
273.bs odd 12 2 3549.1.bm.b 4
273.cb odd 12 2 3549.1.s.c 4
273.cb odd 12 2 3549.1.bm.b 4
273.ch odd 12 2 3549.1.s.c 4
273.ch odd 12 2 3549.1.bk.e 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.1.x.a 2 7.d odd 6 1
273.1.x.a 2 21.g even 6 1
273.1.x.a 2 91.l odd 6 1
273.1.x.a 2 273.br even 6 1
273.1.bp.a yes 2 7.d odd 6 1
273.1.bp.a yes 2 21.g even 6 1
273.1.bp.a yes 2 91.p odd 6 1
273.1.bp.a yes 2 273.y even 6 1
1911.1.x.a 2 7.c even 3 1
1911.1.x.a 2 21.h odd 6 1
1911.1.x.a 2 91.k even 6 1
1911.1.x.a 2 273.bp odd 6 1
1911.1.bc.a 2 1.a even 1 1 trivial
1911.1.bc.a 2 3.b odd 2 1 CM
1911.1.bc.a 2 13.e even 6 1 inner
1911.1.bc.a 2 39.h odd 6 1 inner
1911.1.bc.b 2 7.b odd 2 1
1911.1.bc.b 2 21.c even 2 1
1911.1.bc.b 2 91.t odd 6 1
1911.1.bc.b 2 273.u even 6 1
1911.1.bp.a 2 7.c even 3 1
1911.1.bp.a 2 21.h odd 6 1
1911.1.bp.a 2 91.u even 6 1
1911.1.bp.a 2 273.x odd 6 1
3549.1.s.c 4 91.w even 12 2
3549.1.s.c 4 91.bb even 12 2
3549.1.s.c 4 273.cb odd 12 2
3549.1.s.c 4 273.ch odd 12 2
3549.1.w.a 2 91.l odd 6 1
3549.1.w.a 2 91.m odd 6 1
3549.1.w.a 2 273.bf even 6 1
3549.1.w.a 2 273.br even 6 1
3549.1.w.b 2 91.p odd 6 1
3549.1.w.b 2 91.v odd 6 1
3549.1.w.b 2 273.r even 6 1
3549.1.w.b 2 273.y even 6 1
3549.1.x.a 2 91.s odd 6 1
3549.1.x.a 2 91.v odd 6 1
3549.1.x.a 2 273.r even 6 1
3549.1.x.a 2 273.ba even 6 1
3549.1.bk.e 4 91.w even 12 2
3549.1.bk.e 4 91.ba even 12 2
3549.1.bk.e 4 273.bs odd 12 2
3549.1.bk.e 4 273.ch odd 12 2
3549.1.bm.b 4 91.ba even 12 2
3549.1.bm.b 4 91.bb even 12 2
3549.1.bm.b 4 273.bs odd 12 2
3549.1.bm.b 4 273.cb odd 12 2
3549.1.bp.a 2 91.m odd 6 1
3549.1.bp.a 2 91.s odd 6 1
3549.1.bp.a 2 273.ba even 6 1
3549.1.bp.a 2 273.bf even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{19}^{2} + 3T_{19} + 3$$ acting on $$S_{1}^{\mathrm{new}}(1911, [\chi])$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + T + 1$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$T^{2}$$
$13$ $$T^{2} + T + 1$$
$17$ $$T^{2}$$
$19$ $$T^{2} + 3T + 3$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$T^{2}$$
$37$ $$T^{2} - 3T + 3$$
$41$ $$T^{2}$$
$43$ $$T^{2} - T + 1$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$T^{2} - T + 1$$
$67$ $$T^{2}$$
$71$ $$T^{2}$$
$73$ $$T^{2} + 3$$
$79$ $$(T + 2)^{2}$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$T^{2} - 3T + 3$$