Properties

Label 1904.4.a.b
Level $1904$
Weight $4$
Character orbit 1904.a
Self dual yes
Analytic conductor $112.340$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1904,4,Mod(1,1904)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1904.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1904, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1904 = 2^{4} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1904.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,5,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.339636651\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{93}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 23 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 238)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{93})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 3) q^{3} + (\beta + 4) q^{5} + 7 q^{7} + ( - 5 \beta + 5) q^{9} + (8 \beta - 2) q^{11} + ( - 8 \beta - 10) q^{13} + ( - 2 \beta - 11) q^{15} + 17 q^{17} + (4 \beta - 8) q^{19} + ( - 7 \beta + 21) q^{21}+ \cdots + (10 \beta - 930) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{3} + 9 q^{5} + 14 q^{7} + 5 q^{9} + 4 q^{11} - 28 q^{13} - 24 q^{15} + 34 q^{17} - 12 q^{19} + 35 q^{21} - 50 q^{23} - 163 q^{25} + 110 q^{27} - 208 q^{29} - 189 q^{31} - 362 q^{33} + 63 q^{35}+ \cdots - 1850 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.32183
−4.32183
0 −2.32183 0 9.32183 0 7.00000 0 −21.6091 0
1.2 0 7.32183 0 −0.321825 0 7.00000 0 26.6091 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1904.4.a.b 2
4.b odd 2 1 238.4.a.a 2
12.b even 2 1 2142.4.a.l 2
28.d even 2 1 1666.4.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
238.4.a.a 2 4.b odd 2 1
1666.4.a.c 2 28.d even 2 1
1904.4.a.b 2 1.a even 1 1 trivial
2142.4.a.l 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 5T_{3} - 17 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1904))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 5T - 17 \) Copy content Toggle raw display
$5$ \( T^{2} - 9T - 3 \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 1484 \) Copy content Toggle raw display
$13$ \( T^{2} + 28T - 1292 \) Copy content Toggle raw display
$17$ \( (T - 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 12T - 336 \) Copy content Toggle raw display
$23$ \( T^{2} + 50T + 532 \) Copy content Toggle raw display
$29$ \( T^{2} + 208T - 7412 \) Copy content Toggle raw display
$31$ \( T^{2} + 189T - 8019 \) Copy content Toggle raw display
$37$ \( T^{2} + 320T + 1792 \) Copy content Toggle raw display
$41$ \( T^{2} + 457T + 51073 \) Copy content Toggle raw display
$43$ \( T^{2} - 69T - 109503 \) Copy content Toggle raw display
$47$ \( T^{2} - 774T + 148932 \) Copy content Toggle raw display
$53$ \( T^{2} + 731T + 128359 \) Copy content Toggle raw display
$59$ \( (T + 148)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 339T - 81963 \) Copy content Toggle raw display
$67$ \( T^{2} + 467T - 1301 \) Copy content Toggle raw display
$71$ \( T^{2} + 216T + 5712 \) Copy content Toggle raw display
$73$ \( T^{2} - 821T + 158257 \) Copy content Toggle raw display
$79$ \( T^{2} + 30T - 141228 \) Copy content Toggle raw display
$83$ \( T^{2} - 358T - 548372 \) Copy content Toggle raw display
$89$ \( T^{2} + 918T + 177108 \) Copy content Toggle raw display
$97$ \( T^{2} + 915T - 66927 \) Copy content Toggle raw display
show more
show less