# Properties

 Label 1904.2.a.k Level $1904$ Weight $2$ Character orbit 1904.a Self dual yes Analytic conductor $15.204$ Analytic rank $1$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1904,2,Mod(1,1904)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1904, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1904.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1904 = 2^{4} \cdot 7 \cdot 17$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1904.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$15.2035165449$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{13})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x - 3$$ x^2 - x - 3 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 476) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{13})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{3} + ( - \beta + 1) q^{5} + q^{7} + \beta q^{9}+O(q^{10})$$ q + b * q^3 + (-b + 1) * q^5 + q^7 + b * q^9 $$q + \beta q^{3} + ( - \beta + 1) q^{5} + q^{7} + \beta q^{9} - 4 q^{11} - 2 \beta q^{13} - 3 q^{15} - q^{17} + ( - 2 \beta - 4) q^{19} + \beta q^{21} - 4 q^{23} + ( - \beta - 1) q^{25} + ( - 2 \beta + 3) q^{27} + 4 \beta q^{29} + ( - \beta - 5) q^{31} - 4 \beta q^{33} + ( - \beta + 1) q^{35} + (6 \beta - 4) q^{37} + ( - 2 \beta - 6) q^{39} - 5 \beta q^{41} + (\beta + 2) q^{43} - 3 q^{45} + (2 \beta - 2) q^{47} + q^{49} - \beta q^{51} + ( - \beta + 3) q^{53} + (4 \beta - 4) q^{55} + ( - 6 \beta - 6) q^{57} + 8 q^{59} + (5 \beta + 4) q^{61} + \beta q^{63} + 6 q^{65} + (\beta - 5) q^{67} - 4 \beta q^{69} + ( - 2 \beta + 8) q^{71} + (5 \beta - 4) q^{73} + ( - 2 \beta - 3) q^{75} - 4 q^{77} + (2 \beta - 2) q^{79} + ( - 2 \beta - 6) q^{81} + ( - 4 \beta + 6) q^{83} + (\beta - 1) q^{85} + (4 \beta + 12) q^{87} + (6 \beta - 6) q^{89} - 2 \beta q^{91} + ( - 6 \beta - 3) q^{93} + (4 \beta + 2) q^{95} + ( - \beta - 11) q^{97} - 4 \beta q^{99} +O(q^{100})$$ q + b * q^3 + (-b + 1) * q^5 + q^7 + b * q^9 - 4 * q^11 - 2*b * q^13 - 3 * q^15 - q^17 + (-2*b - 4) * q^19 + b * q^21 - 4 * q^23 + (-b - 1) * q^25 + (-2*b + 3) * q^27 + 4*b * q^29 + (-b - 5) * q^31 - 4*b * q^33 + (-b + 1) * q^35 + (6*b - 4) * q^37 + (-2*b - 6) * q^39 - 5*b * q^41 + (b + 2) * q^43 - 3 * q^45 + (2*b - 2) * q^47 + q^49 - b * q^51 + (-b + 3) * q^53 + (4*b - 4) * q^55 + (-6*b - 6) * q^57 + 8 * q^59 + (5*b + 4) * q^61 + b * q^63 + 6 * q^65 + (b - 5) * q^67 - 4*b * q^69 + (-2*b + 8) * q^71 + (5*b - 4) * q^73 + (-2*b - 3) * q^75 - 4 * q^77 + (2*b - 2) * q^79 + (-2*b - 6) * q^81 + (-4*b + 6) * q^83 + (b - 1) * q^85 + (4*b + 12) * q^87 + (6*b - 6) * q^89 - 2*b * q^91 + (-6*b - 3) * q^93 + (4*b + 2) * q^95 + (-b - 11) * q^97 - 4*b * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{3} + q^{5} + 2 q^{7} + q^{9}+O(q^{10})$$ 2 * q + q^3 + q^5 + 2 * q^7 + q^9 $$2 q + q^{3} + q^{5} + 2 q^{7} + q^{9} - 8 q^{11} - 2 q^{13} - 6 q^{15} - 2 q^{17} - 10 q^{19} + q^{21} - 8 q^{23} - 3 q^{25} + 4 q^{27} + 4 q^{29} - 11 q^{31} - 4 q^{33} + q^{35} - 2 q^{37} - 14 q^{39} - 5 q^{41} + 5 q^{43} - 6 q^{45} - 2 q^{47} + 2 q^{49} - q^{51} + 5 q^{53} - 4 q^{55} - 18 q^{57} + 16 q^{59} + 13 q^{61} + q^{63} + 12 q^{65} - 9 q^{67} - 4 q^{69} + 14 q^{71} - 3 q^{73} - 8 q^{75} - 8 q^{77} - 2 q^{79} - 14 q^{81} + 8 q^{83} - q^{85} + 28 q^{87} - 6 q^{89} - 2 q^{91} - 12 q^{93} + 8 q^{95} - 23 q^{97} - 4 q^{99}+O(q^{100})$$ 2 * q + q^3 + q^5 + 2 * q^7 + q^9 - 8 * q^11 - 2 * q^13 - 6 * q^15 - 2 * q^17 - 10 * q^19 + q^21 - 8 * q^23 - 3 * q^25 + 4 * q^27 + 4 * q^29 - 11 * q^31 - 4 * q^33 + q^35 - 2 * q^37 - 14 * q^39 - 5 * q^41 + 5 * q^43 - 6 * q^45 - 2 * q^47 + 2 * q^49 - q^51 + 5 * q^53 - 4 * q^55 - 18 * q^57 + 16 * q^59 + 13 * q^61 + q^63 + 12 * q^65 - 9 * q^67 - 4 * q^69 + 14 * q^71 - 3 * q^73 - 8 * q^75 - 8 * q^77 - 2 * q^79 - 14 * q^81 + 8 * q^83 - q^85 + 28 * q^87 - 6 * q^89 - 2 * q^91 - 12 * q^93 + 8 * q^95 - 23 * q^97 - 4 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.30278 2.30278
0 −1.30278 0 2.30278 0 1.00000 0 −1.30278 0
1.2 0 2.30278 0 −1.30278 0 1.00000 0 2.30278 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$7$$ $$-1$$
$$17$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1904.2.a.k 2
4.b odd 2 1 476.2.a.c 2
8.b even 2 1 7616.2.a.o 2
8.d odd 2 1 7616.2.a.t 2
12.b even 2 1 4284.2.a.l 2
28.d even 2 1 3332.2.a.k 2
68.d odd 2 1 8092.2.a.l 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
476.2.a.c 2 4.b odd 2 1
1904.2.a.k 2 1.a even 1 1 trivial
3332.2.a.k 2 28.d even 2 1
4284.2.a.l 2 12.b even 2 1
7616.2.a.o 2 8.b even 2 1
7616.2.a.t 2 8.d odd 2 1
8092.2.a.l 2 68.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1904))$$:

 $$T_{3}^{2} - T_{3} - 3$$ T3^2 - T3 - 3 $$T_{5}^{2} - T_{5} - 3$$ T5^2 - T5 - 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} - T - 3$$
$5$ $$T^{2} - T - 3$$
$7$ $$(T - 1)^{2}$$
$11$ $$(T + 4)^{2}$$
$13$ $$T^{2} + 2T - 12$$
$17$ $$(T + 1)^{2}$$
$19$ $$T^{2} + 10T + 12$$
$23$ $$(T + 4)^{2}$$
$29$ $$T^{2} - 4T - 48$$
$31$ $$T^{2} + 11T + 27$$
$37$ $$T^{2} + 2T - 116$$
$41$ $$T^{2} + 5T - 75$$
$43$ $$T^{2} - 5T + 3$$
$47$ $$T^{2} + 2T - 12$$
$53$ $$T^{2} - 5T + 3$$
$59$ $$(T - 8)^{2}$$
$61$ $$T^{2} - 13T - 39$$
$67$ $$T^{2} + 9T + 17$$
$71$ $$T^{2} - 14T + 36$$
$73$ $$T^{2} + 3T - 79$$
$79$ $$T^{2} + 2T - 12$$
$83$ $$T^{2} - 8T - 36$$
$89$ $$T^{2} + 6T - 108$$
$97$ $$T^{2} + 23T + 129$$