Properties

Label 1904.2.a.g
Level $1904$
Weight $2$
Character orbit 1904.a
Self dual yes
Analytic conductor $15.204$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1904,2,Mod(1,1904)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1904, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1904.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1904 = 2^{4} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1904.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.2035165449\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} + ( - \beta - 1) q^{5} + q^{7} + \beta q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{3} + ( - \beta - 1) q^{5} + q^{7} + \beta q^{9} + (2 \beta - 2) q^{11} - 4 q^{13} + (2 \beta + 3) q^{15} + q^{17} + (2 \beta - 2) q^{19} - \beta q^{21} + 6 q^{23} + (3 \beta - 1) q^{25} + (2 \beta - 3) q^{27} + (2 \beta - 6) q^{29} + ( - 3 \beta + 1) q^{31} - 6 q^{33} + ( - \beta - 1) q^{35} + (2 \beta - 2) q^{37} + 4 \beta q^{39} + (\beta + 2) q^{41} + (\beta + 4) q^{43} + ( - 2 \beta - 3) q^{45} + (4 \beta - 4) q^{47} + q^{49} - \beta q^{51} + ( - \beta - 9) q^{53} + ( - 2 \beta - 4) q^{55} - 6 q^{57} - 4 \beta q^{59} + ( - \beta - 6) q^{61} + \beta q^{63} + (4 \beta + 4) q^{65} + ( - 5 \beta + 7) q^{67} - 6 \beta q^{69} + (2 \beta + 2) q^{71} + (3 \beta - 2) q^{73} + ( - 2 \beta - 9) q^{75} + (2 \beta - 2) q^{77} + ( - 4 \beta - 4) q^{79} + ( - 2 \beta - 6) q^{81} + ( - 6 \beta + 10) q^{83} + ( - \beta - 1) q^{85} + (4 \beta - 6) q^{87} + ( - 4 \beta + 12) q^{89} - 4 q^{91} + (2 \beta + 9) q^{93} + ( - 2 \beta - 4) q^{95} + ( - \beta + 3) q^{97} + 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 3 q^{5} + 2 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} - 3 q^{5} + 2 q^{7} + q^{9} - 2 q^{11} - 8 q^{13} + 8 q^{15} + 2 q^{17} - 2 q^{19} - q^{21} + 12 q^{23} + q^{25} - 4 q^{27} - 10 q^{29} - q^{31} - 12 q^{33} - 3 q^{35} - 2 q^{37} + 4 q^{39} + 5 q^{41} + 9 q^{43} - 8 q^{45} - 4 q^{47} + 2 q^{49} - q^{51} - 19 q^{53} - 10 q^{55} - 12 q^{57} - 4 q^{59} - 13 q^{61} + q^{63} + 12 q^{65} + 9 q^{67} - 6 q^{69} + 6 q^{71} - q^{73} - 20 q^{75} - 2 q^{77} - 12 q^{79} - 14 q^{81} + 14 q^{83} - 3 q^{85} - 8 q^{87} + 20 q^{89} - 8 q^{91} + 20 q^{93} - 10 q^{95} + 5 q^{97} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.30278
−1.30278
0 −2.30278 0 −3.30278 0 1.00000 0 2.30278 0
1.2 0 1.30278 0 0.302776 0 1.00000 0 −1.30278 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(7\) \(-1\)
\(17\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1904.2.a.g 2
4.b odd 2 1 952.2.a.b 2
8.b even 2 1 7616.2.a.x 2
8.d odd 2 1 7616.2.a.s 2
12.b even 2 1 8568.2.a.t 2
28.d even 2 1 6664.2.a.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
952.2.a.b 2 4.b odd 2 1
1904.2.a.g 2 1.a even 1 1 trivial
6664.2.a.g 2 28.d even 2 1
7616.2.a.s 2 8.d odd 2 1
7616.2.a.x 2 8.b even 2 1
8568.2.a.t 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1904))\):

\( T_{3}^{2} + T_{3} - 3 \) Copy content Toggle raw display
\( T_{5}^{2} + 3T_{5} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 3 \) Copy content Toggle raw display
$5$ \( T^{2} + 3T - 1 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$13$ \( (T + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$23$ \( (T - 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 10T + 12 \) Copy content Toggle raw display
$31$ \( T^{2} + T - 29 \) Copy content Toggle raw display
$37$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$41$ \( T^{2} - 5T + 3 \) Copy content Toggle raw display
$43$ \( T^{2} - 9T + 17 \) Copy content Toggle raw display
$47$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$53$ \( T^{2} + 19T + 87 \) Copy content Toggle raw display
$59$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$61$ \( T^{2} + 13T + 39 \) Copy content Toggle raw display
$67$ \( T^{2} - 9T - 61 \) Copy content Toggle raw display
$71$ \( T^{2} - 6T - 4 \) Copy content Toggle raw display
$73$ \( T^{2} + T - 29 \) Copy content Toggle raw display
$79$ \( T^{2} + 12T - 16 \) Copy content Toggle raw display
$83$ \( T^{2} - 14T - 68 \) Copy content Toggle raw display
$89$ \( T^{2} - 20T + 48 \) Copy content Toggle raw display
$97$ \( T^{2} - 5T + 3 \) Copy content Toggle raw display
show more
show less