Properties

Label 1900.4.a.b
Level $1900$
Weight $4$
Character orbit 1900.a
Self dual yes
Analytic conductor $112.104$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1900.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(112.103629011\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
Defining polynomial: \(x^{2} - x - 8\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 76)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 3 - \beta ) q^{3} + ( 17 - 4 \beta ) q^{7} + ( -10 - 5 \beta ) q^{9} +O(q^{10})\) \( q + ( 3 - \beta ) q^{3} + ( 17 - 4 \beta ) q^{7} + ( -10 - 5 \beta ) q^{9} + ( -38 + 5 \beta ) q^{11} + ( 23 - 11 \beta ) q^{13} + ( -3 + 6 \beta ) q^{17} -19 q^{19} + ( 83 - 25 \beta ) q^{21} + ( -27 + 59 \beta ) q^{23} + ( -71 + 27 \beta ) q^{27} + ( 45 + 65 \beta ) q^{29} + ( -84 + 80 \beta ) q^{31} + ( -154 + 48 \beta ) q^{33} + ( -186 - 8 \beta ) q^{37} + ( 157 - 45 \beta ) q^{39} + ( -56 - 30 \beta ) q^{41} + ( -136 + 117 \beta ) q^{43} + ( 216 + 23 \beta ) q^{47} + ( 74 - 120 \beta ) q^{49} + ( -57 + 15 \beta ) q^{51} + ( 199 - 123 \beta ) q^{53} + ( -57 + 19 \beta ) q^{57} + ( -419 - 35 \beta ) q^{59} + ( 310 - 175 \beta ) q^{61} + ( -10 - 25 \beta ) q^{63} + ( -353 + 61 \beta ) q^{67} + ( -553 + 145 \beta ) q^{69} + ( -846 - 20 \beta ) q^{71} + ( 463 + 64 \beta ) q^{73} + ( -806 + 217 \beta ) q^{77} + ( -642 + 10 \beta ) q^{79} + ( -159 + 260 \beta ) q^{81} + ( 102 - 114 \beta ) q^{83} + ( -385 + 85 \beta ) q^{87} + ( -484 + 80 \beta ) q^{89} + ( 743 - 235 \beta ) q^{91} + ( -892 + 244 \beta ) q^{93} + ( -126 - 458 \beta ) q^{97} + ( 180 + 115 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 5q^{3} + 30q^{7} - 25q^{9} + O(q^{10}) \) \( 2q + 5q^{3} + 30q^{7} - 25q^{9} - 71q^{11} + 35q^{13} - 38q^{19} + 141q^{21} + 5q^{23} - 115q^{27} + 155q^{29} - 88q^{31} - 260q^{33} - 380q^{37} + 269q^{39} - 142q^{41} - 155q^{43} + 455q^{47} + 28q^{49} - 99q^{51} + 275q^{53} - 95q^{57} - 873q^{59} + 445q^{61} - 45q^{63} - 645q^{67} - 961q^{69} - 1712q^{71} + 990q^{73} - 1395q^{77} - 1274q^{79} - 58q^{81} + 90q^{83} - 685q^{87} - 888q^{89} + 1251q^{91} - 1540q^{93} - 710q^{97} + 475q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.37228
−2.37228
0 −0.372281 0 0 0 3.51087 0 −26.8614 0
1.2 0 5.37228 0 0 0 26.4891 0 1.86141 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1900.4.a.b 2
5.b even 2 1 76.4.a.a 2
5.c odd 4 2 1900.4.c.b 4
15.d odd 2 1 684.4.a.g 2
20.d odd 2 1 304.4.a.f 2
40.e odd 2 1 1216.4.a.h 2
40.f even 2 1 1216.4.a.o 2
95.d odd 2 1 1444.4.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.4.a.a 2 5.b even 2 1
304.4.a.f 2 20.d odd 2 1
684.4.a.g 2 15.d odd 2 1
1216.4.a.h 2 40.e odd 2 1
1216.4.a.o 2 40.f even 2 1
1444.4.a.d 2 95.d odd 2 1
1900.4.a.b 2 1.a even 1 1 trivial
1900.4.c.b 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 5 T_{3} - 2 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1900))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( -2 - 5 T + T^{2} \)
$5$ \( T^{2} \)
$7$ \( 93 - 30 T + T^{2} \)
$11$ \( 1054 + 71 T + T^{2} \)
$13$ \( -692 - 35 T + T^{2} \)
$17$ \( -297 + T^{2} \)
$19$ \( ( 19 + T )^{2} \)
$23$ \( -28712 - 5 T + T^{2} \)
$29$ \( -28850 - 155 T + T^{2} \)
$31$ \( -50864 + 88 T + T^{2} \)
$37$ \( 35572 + 380 T + T^{2} \)
$41$ \( -2384 + 142 T + T^{2} \)
$43$ \( -106928 + 155 T + T^{2} \)
$47$ \( 47392 - 455 T + T^{2} \)
$53$ \( -105908 - 275 T + T^{2} \)
$59$ \( 180426 + 873 T + T^{2} \)
$61$ \( -203150 - 445 T + T^{2} \)
$67$ \( 73308 + 645 T + T^{2} \)
$71$ \( 729436 + 1712 T + T^{2} \)
$73$ \( 211233 - 990 T + T^{2} \)
$79$ \( 404944 + 1274 T + T^{2} \)
$83$ \( -105192 - 90 T + T^{2} \)
$89$ \( 144336 + 888 T + T^{2} \)
$97$ \( -1604528 + 710 T + T^{2} \)
show more
show less