Properties

Label 1900.3.e.d.1101.3
Level $1900$
Weight $3$
Character 1900.1101
Self dual yes
Analytic conductor $51.771$
Analytic rank $0$
Dimension $4$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1900,3,Mod(1101,1900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1900.1101");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1900.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7712502285\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 11x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 380)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1101.3
Root \(-1.31342\) of defining polynomial
Character \(\chi\) \(=\) 1900.1101

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.20822 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q+2.20822 q^{7} +9.00000 q^{9} +20.3746 q^{11} -28.2465 q^{17} +19.0000 q^{19} +34.8712 q^{23} +67.0738 q^{43} -36.6191 q^{47} -44.1238 q^{49} -5.12376 q^{61} +19.8740 q^{63} -93.5725 q^{73} +44.9916 q^{77} +81.0000 q^{81} -139.485 q^{83} +183.371 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 36 q^{9} + 6 q^{11} + 76 q^{19} + 50 q^{49} + 206 q^{61} + 324 q^{81} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\) \(951\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.20822 0.315460 0.157730 0.987482i \(-0.449582\pi\)
0.157730 + 0.987482i \(0.449582\pi\)
\(8\) 0 0
\(9\) 9.00000 1.00000
\(10\) 0 0
\(11\) 20.3746 1.85224 0.926118 0.377235i \(-0.123125\pi\)
0.926118 + 0.377235i \(0.123125\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −28.2465 −1.66156 −0.830780 0.556601i \(-0.812105\pi\)
−0.830780 + 0.556601i \(0.812105\pi\)
\(18\) 0 0
\(19\) 19.0000 1.00000
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 34.8712 1.51614 0.758069 0.652174i \(-0.226143\pi\)
0.758069 + 0.652174i \(0.226143\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 67.0738 1.55986 0.779928 0.625869i \(-0.215256\pi\)
0.779928 + 0.625869i \(0.215256\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −36.6191 −0.779129 −0.389564 0.920999i \(-0.627374\pi\)
−0.389564 + 0.920999i \(0.627374\pi\)
\(48\) 0 0
\(49\) −44.1238 −0.900485
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −5.12376 −0.0839960 −0.0419980 0.999118i \(-0.513372\pi\)
−0.0419980 + 0.999118i \(0.513372\pi\)
\(62\) 0 0
\(63\) 19.8740 0.315460
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −93.5725 −1.28181 −0.640907 0.767618i \(-0.721442\pi\)
−0.640907 + 0.767618i \(0.721442\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 44.9916 0.584306
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 81.0000 1.00000
\(82\) 0 0
\(83\) −139.485 −1.68054 −0.840270 0.542169i \(-0.817603\pi\)
−0.840270 + 0.542169i \(0.817603\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 183.371 1.85224
\(100\) 0 0
\(101\) 102.000 1.00990 0.504950 0.863148i \(-0.331511\pi\)
0.504950 + 0.863148i \(0.331511\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −62.3746 −0.524156
\(120\) 0 0
\(121\) 294.124 2.43077
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 238.622 1.82154 0.910771 0.412911i \(-0.135488\pi\)
0.910771 + 0.412911i \(0.135488\pi\)
\(132\) 0 0
\(133\) 41.9562 0.315460
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 270.964 1.97784 0.988919 0.148456i \(-0.0474303\pi\)
0.988919 + 0.148456i \(0.0474303\pi\)
\(138\) 0 0
\(139\) −71.3713 −0.513462 −0.256731 0.966483i \(-0.582646\pi\)
−0.256731 + 0.966483i \(0.582646\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 296.120 1.98739 0.993693 0.112137i \(-0.0357695\pi\)
0.993693 + 0.112137i \(0.0357695\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −254.219 −1.66156
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 313.841 1.99899 0.999493 0.0318471i \(-0.0101390\pi\)
0.999493 + 0.0318471i \(0.0101390\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 77.0033 0.478281
\(162\) 0 0
\(163\) 209.227 1.28360 0.641801 0.766871i \(-0.278187\pi\)
0.641801 + 0.766871i \(0.278187\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 169.000 1.00000
\(170\) 0 0
\(171\) 171.000 1.00000
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −575.511 −3.07760
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −274.368 −1.43648 −0.718241 0.695795i \(-0.755052\pi\)
−0.718241 + 0.695795i \(0.755052\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −383.583 −1.94712 −0.973561 0.228426i \(-0.926642\pi\)
−0.973561 + 0.228426i \(0.926642\pi\)
\(198\) 0 0
\(199\) −169.619 −0.852356 −0.426178 0.904639i \(-0.640140\pi\)
−0.426178 + 0.904639i \(0.640140\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 313.841 1.51614
\(208\) 0 0
\(209\) 387.117 1.85224
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) −387.866 −1.69374 −0.846870 0.531800i \(-0.821516\pi\)
−0.846870 + 0.531800i \(0.821516\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −387.446 −1.66286 −0.831428 0.555632i \(-0.812476\pi\)
−0.831428 + 0.555632i \(0.812476\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −358.622 −1.50051 −0.750255 0.661148i \(-0.770070\pi\)
−0.750255 + 0.661148i \(0.770070\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 420.615 1.67576 0.837879 0.545855i \(-0.183795\pi\)
0.837879 + 0.545855i \(0.183795\pi\)
\(252\) 0 0
\(253\) 710.486 2.80825
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 518.558 1.97170 0.985852 0.167621i \(-0.0536085\pi\)
0.985852 + 0.167621i \(0.0536085\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 142.000 0.523985 0.261993 0.965070i \(-0.415620\pi\)
0.261993 + 0.965070i \(0.415620\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −391.402 −1.41300 −0.706501 0.707712i \(-0.749728\pi\)
−0.706501 + 0.707712i \(0.749728\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 139.391 0.492549 0.246274 0.969200i \(-0.420794\pi\)
0.246274 + 0.969200i \(0.420794\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 508.866 1.76078
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 148.114 0.492073
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 169.378 0.544623 0.272312 0.962209i \(-0.412212\pi\)
0.272312 + 0.962209i \(0.412212\pi\)
\(312\) 0 0
\(313\) 209.227 0.668457 0.334229 0.942492i \(-0.391524\pi\)
0.334229 + 0.942492i \(0.391524\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −536.684 −1.66156
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −80.8630 −0.245784
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −205.638 −0.599527
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 503.928 1.45224 0.726120 0.687568i \(-0.241322\pi\)
0.726120 + 0.687568i \(0.241322\pi\)
\(348\) 0 0
\(349\) 659.866 1.89073 0.945367 0.326007i \(-0.105703\pi\)
0.945367 + 0.326007i \(0.105703\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −488.197 −1.38299 −0.691497 0.722380i \(-0.743048\pi\)
−0.691497 + 0.722380i \(0.743048\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 463.612 1.29140 0.645699 0.763592i \(-0.276566\pi\)
0.645699 + 0.763592i \(0.276566\pi\)
\(360\) 0 0
\(361\) 361.000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −732.295 −1.99535 −0.997677 0.0681199i \(-0.978300\pi\)
−0.997677 + 0.0681199i \(0.978300\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 603.664 1.55986
\(388\) 0 0
\(389\) −737.111 −1.89489 −0.947443 0.319925i \(-0.896342\pi\)
−0.947443 + 0.319925i \(0.896342\pi\)
\(390\) 0 0
\(391\) −984.990 −2.51916
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −507.884 −1.27930 −0.639652 0.768665i \(-0.720921\pi\)
−0.639652 + 0.768665i \(0.720921\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −762.000 −1.81862 −0.909308 0.416124i \(-0.863388\pi\)
−0.909308 + 0.416124i \(0.863388\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) −329.572 −0.779129
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −11.3144 −0.0264974
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 662.553 1.51614
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −397.114 −0.900485
\(442\) 0 0
\(443\) −403.457 −0.910738 −0.455369 0.890303i \(-0.650493\pi\)
−0.455369 + 0.890303i \(0.650493\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 874.722 1.91405 0.957026 0.290003i \(-0.0936562\pi\)
0.957026 + 0.290003i \(0.0936562\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −921.860 −1.99970 −0.999848 0.0174455i \(-0.994447\pi\)
−0.999848 + 0.0174455i \(0.994447\pi\)
\(462\) 0 0
\(463\) −921.921 −1.99119 −0.995596 0.0937525i \(-0.970114\pi\)
−0.995596 + 0.0937525i \(0.970114\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 886.130 1.89749 0.948747 0.316037i \(-0.102352\pi\)
0.948747 + 0.316037i \(0.102352\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1366.60 2.88922
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −942.000 −1.96660 −0.983299 0.182000i \(-0.941743\pi\)
−0.983299 + 0.182000i \(0.941743\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −918.000 −1.86965 −0.934827 0.355104i \(-0.884446\pi\)
−0.934827 + 0.355104i \(0.884446\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 474.609 0.951120 0.475560 0.879683i \(-0.342245\pi\)
0.475560 + 0.879683i \(0.342245\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 383.583 0.762591 0.381295 0.924453i \(-0.375478\pi\)
0.381295 + 0.924453i \(0.375478\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) −206.629 −0.404361
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −746.098 −1.44313
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 687.000 1.29868
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −899.003 −1.66791
\(540\) 0 0
\(541\) 620.856 1.14761 0.573804 0.818992i \(-0.305467\pi\)
0.573804 + 0.818992i \(0.305467\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) −46.1138 −0.0839960
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1050.73 −1.88641 −0.943206 0.332207i \(-0.892207\pi\)
−0.943206 + 0.332207i \(0.892207\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 178.866 0.315460
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −458.000 −0.802102 −0.401051 0.916056i \(-0.631355\pi\)
−0.401051 + 0.916056i \(0.631355\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1063.52 1.84319 0.921595 0.388152i \(-0.126887\pi\)
0.921595 + 0.388152i \(0.126887\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −308.013 −0.530143
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1142.10 −1.94565 −0.972825 0.231543i \(-0.925623\pi\)
−0.972825 + 0.231543i \(0.925623\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1185.62 −1.99936 −0.999680 0.0252951i \(-0.991947\pi\)
−0.999680 + 0.0252951i \(0.991947\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −339.512 −0.553854 −0.276927 0.960891i \(-0.589316\pi\)
−0.276927 + 0.960891i \(0.589316\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −610.656 −0.989718 −0.494859 0.868973i \(-0.664780\pi\)
−0.494859 + 0.868973i \(0.664780\pi\)
\(618\) 0 0
\(619\) −662.000 −1.06947 −0.534733 0.845021i \(-0.679588\pi\)
−0.534733 + 0.845021i \(0.679588\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 104.361 0.165390 0.0826952 0.996575i \(-0.473647\pi\)
0.0826952 + 0.996575i \(0.473647\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 1286.00 2.00000 0.999998 0.00201180i \(-0.000640375\pi\)
0.999998 + 0.00201180i \(0.000640375\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 462.798 0.715299 0.357650 0.933856i \(-0.383578\pi\)
0.357650 + 0.933856i \(0.383578\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 950.262 1.45522 0.727612 0.685989i \(-0.240630\pi\)
0.727612 + 0.685989i \(0.240630\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −842.152 −1.28181
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −104.394 −0.155580
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1267.60 −1.83444 −0.917221 0.398380i \(-0.869573\pi\)
−0.917221 + 0.398380i \(0.869573\pi\)
\(692\) 0 0
\(693\) 404.924 0.584306
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1098.00 −1.56633 −0.783167 0.621812i \(-0.786397\pi\)
−0.783167 + 0.621812i \(0.786397\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 225.239 0.318584
\(708\) 0 0
\(709\) 1318.00 1.85896 0.929478 0.368877i \(-0.120258\pi\)
0.929478 + 0.368877i \(0.120258\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1406.35 −1.95599 −0.977994 0.208635i \(-0.933098\pi\)
−0.977994 + 0.208635i \(0.933098\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 799.369 1.09954 0.549772 0.835315i \(-0.314715\pi\)
0.549772 + 0.835315i \(0.314715\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) 0 0
\(731\) −1894.60 −2.59180
\(732\) 0 0
\(733\) 732.295 0.999038 0.499519 0.866303i \(-0.333510\pi\)
0.499519 + 0.866303i \(0.333510\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −915.599 −1.23897 −0.619485 0.785008i \(-0.712659\pi\)
−0.619485 + 0.785008i \(0.712659\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1255.36 −1.68054
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1327.13 −1.75314 −0.876570 0.481275i \(-0.840174\pi\)
−0.876570 + 0.481275i \(0.840174\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 543.880 0.714691 0.357345 0.933972i \(-0.383682\pi\)
0.357345 + 0.933972i \(0.383682\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 431.104 0.560603 0.280302 0.959912i \(-0.409566\pi\)
0.280302 + 0.959912i \(0.409566\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 1034.36 1.29457
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1906.50 −2.37422
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −551.130 −0.681249 −0.340624 0.940199i \(-0.610638\pi\)
−0.340624 + 0.940199i \(0.610638\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1274.40 1.55986
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1583.85 −1.92918 −0.964588 0.263762i \(-0.915037\pi\)
−0.964588 + 0.263762i \(0.915037\pi\)
\(822\) 0 0
\(823\) 1610.33 1.95665 0.978326 0.207068i \(-0.0663923\pi\)
0.978326 + 0.207068i \(0.0663923\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1246.34 1.49621
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 649.490 0.766813
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −1359.98 −1.59435 −0.797173 0.603751i \(-0.793672\pi\)
−0.797173 + 0.603751i \(0.793672\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −1482.61 −1.72597 −0.862985 0.505229i \(-0.831408\pi\)
−0.862985 + 0.505229i \(0.831408\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1184.84 1.34488 0.672442 0.740150i \(-0.265245\pi\)
0.672442 + 0.740150i \(0.265245\pi\)
\(882\) 0 0
\(883\) 54.9322 0.0622109 0.0311055 0.999516i \(-0.490097\pi\)
0.0311055 + 0.999516i \(0.490097\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1650.34 1.85224
\(892\) 0 0
\(893\) −695.762 −0.779129
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 918.000 1.00990
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −2841.94 −3.11275
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 526.930 0.574624
\(918\) 0 0
\(919\) −1762.00 −1.91730 −0.958651 0.284585i \(-0.908144\pi\)
−0.958651 + 0.284585i \(0.908144\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −642.000 −0.691066 −0.345533 0.938407i \(-0.612302\pi\)
−0.345533 + 0.938407i \(0.612302\pi\)
\(930\) 0 0
\(931\) −838.351 −0.900485
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1212.03 1.29352 0.646759 0.762695i \(-0.276124\pi\)
0.646759 + 0.762695i \(0.276124\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 488.197 0.515519 0.257760 0.966209i \(-0.417016\pi\)
0.257760 + 0.966209i \(0.417016\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 598.348 0.623929
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −732.295 −0.757285 −0.378643 0.925543i \(-0.623609\pi\)
−0.378643 + 0.925543i \(0.623609\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) −157.604 −0.161977
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2338.94 2.36496
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1847.71 1.85327 0.926633 0.375968i \(-0.122690\pi\)
0.926633 + 0.375968i \(0.122690\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.3.e.d.1101.3 4
5.2 odd 4 380.3.g.b.189.1 4
5.3 odd 4 380.3.g.b.189.2 yes 4
5.4 even 2 inner 1900.3.e.d.1101.2 4
15.2 even 4 3420.3.h.a.2089.4 4
15.8 even 4 3420.3.h.a.2089.3 4
19.18 odd 2 CM 1900.3.e.d.1101.3 4
95.18 even 4 380.3.g.b.189.2 yes 4
95.37 even 4 380.3.g.b.189.1 4
95.94 odd 2 inner 1900.3.e.d.1101.2 4
285.113 odd 4 3420.3.h.a.2089.3 4
285.227 odd 4 3420.3.h.a.2089.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.3.g.b.189.1 4 5.2 odd 4
380.3.g.b.189.1 4 95.37 even 4
380.3.g.b.189.2 yes 4 5.3 odd 4
380.3.g.b.189.2 yes 4 95.18 even 4
1900.3.e.d.1101.2 4 5.4 even 2 inner
1900.3.e.d.1101.2 4 95.94 odd 2 inner
1900.3.e.d.1101.3 4 1.1 even 1 trivial
1900.3.e.d.1101.3 4 19.18 odd 2 CM
3420.3.h.a.2089.3 4 15.8 even 4
3420.3.h.a.2089.3 4 285.113 odd 4
3420.3.h.a.2089.4 4 15.2 even 4
3420.3.h.a.2089.4 4 285.227 odd 4