Properties

Label 1900.3.e.a
Level $1900$
Weight $3$
Character orbit 1900.e
Self dual yes
Analytic conductor $51.771$
Analytic rank $0$
Dimension $2$
CM discriminant -19
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1900.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(51.7712502285\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
Defining polynomial: \(x^{2} - x - 14\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 76)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{57})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - 3 \beta ) q^{7} + 9 q^{9} +O(q^{10})\) \( q + ( -1 - 3 \beta ) q^{7} + 9 q^{9} + ( 1 - 5 \beta ) q^{11} + ( 11 - 7 \beta ) q^{17} -19 q^{19} + 30 q^{23} + ( -41 - 3 \beta ) q^{43} + ( 31 + 13 \beta ) q^{47} + ( 78 + 15 \beta ) q^{49} + ( -59 + 15 \beta ) q^{61} + ( -9 - 27 \beta ) q^{63} + ( -29 + 33 \beta ) q^{73} + ( 209 + 17 \beta ) q^{77} + 81 q^{81} -90 q^{83} + ( 9 - 45 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 5q^{7} + 18q^{9} + O(q^{10}) \) \( 2q - 5q^{7} + 18q^{9} - 3q^{11} + 15q^{17} - 38q^{19} + 60q^{23} - 85q^{43} + 75q^{47} + 171q^{49} - 103q^{61} - 45q^{63} - 25q^{73} + 435q^{77} + 162q^{81} - 180q^{83} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\) \(951\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1101.1
4.27492
−3.27492
0 0 0 0 0 −13.8248 0 9.00000 0
1101.2 0 0 0 0 0 8.82475 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1900.3.e.a 2
5.b even 2 1 76.3.c.b 2
5.c odd 4 2 1900.3.g.a 4
15.d odd 2 1 684.3.h.a 2
19.b odd 2 1 CM 1900.3.e.a 2
20.d odd 2 1 304.3.e.e 2
40.e odd 2 1 1216.3.e.e 2
40.f even 2 1 1216.3.e.f 2
60.h even 2 1 2736.3.o.c 2
95.d odd 2 1 76.3.c.b 2
95.g even 4 2 1900.3.g.a 4
285.b even 2 1 684.3.h.a 2
380.d even 2 1 304.3.e.e 2
760.b odd 2 1 1216.3.e.f 2
760.p even 2 1 1216.3.e.e 2
1140.p odd 2 1 2736.3.o.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.3.c.b 2 5.b even 2 1
76.3.c.b 2 95.d odd 2 1
304.3.e.e 2 20.d odd 2 1
304.3.e.e 2 380.d even 2 1
684.3.h.a 2 15.d odd 2 1
684.3.h.a 2 285.b even 2 1
1216.3.e.e 2 40.e odd 2 1
1216.3.e.e 2 760.p even 2 1
1216.3.e.f 2 40.f even 2 1
1216.3.e.f 2 760.b odd 2 1
1900.3.e.a 2 1.a even 1 1 trivial
1900.3.e.a 2 19.b odd 2 1 CM
1900.3.g.a 4 5.c odd 4 2
1900.3.g.a 4 95.g even 4 2
2736.3.o.c 2 60.h even 2 1
2736.3.o.c 2 1140.p odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1900, [\chi])\):

\( T_{3} \)
\( T_{7}^{2} + 5 T_{7} - 122 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( -122 + 5 T + T^{2} \)
$11$ \( -354 + 3 T + T^{2} \)
$13$ \( T^{2} \)
$17$ \( -642 - 15 T + T^{2} \)
$19$ \( ( 19 + T )^{2} \)
$23$ \( ( -30 + T )^{2} \)
$29$ \( T^{2} \)
$31$ \( T^{2} \)
$37$ \( T^{2} \)
$41$ \( T^{2} \)
$43$ \( 1678 + 85 T + T^{2} \)
$47$ \( -1002 - 75 T + T^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( -554 + 103 T + T^{2} \)
$67$ \( T^{2} \)
$71$ \( T^{2} \)
$73$ \( -15362 + 25 T + T^{2} \)
$79$ \( T^{2} \)
$83$ \( ( 90 + T )^{2} \)
$89$ \( T^{2} \)
$97$ \( T^{2} \)
show more
show less