Properties

Label 1900.2.i.g.201.10
Level $1900$
Weight $2$
Character 1900.201
Analytic conductor $15.172$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1900,2,Mod(201,1900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1900, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1900.201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1900.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1715763840\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 20 x^{18} + 261 x^{16} + 1994 x^{14} + 11074 x^{12} + 39211 x^{10} + 99376 x^{8} + 134299 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 380)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 201.10
Root \(-1.43632 - 2.48777i\) of defining polynomial
Character \(\chi\) \(=\) 1900.201
Dual form 1900.2.i.g.501.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.43632 - 2.48777i) q^{3} -3.54568 q^{7} +(-2.62601 - 4.54838i) q^{9} -1.81575 q^{11} +(1.60681 + 2.78308i) q^{13} +(-3.99638 + 6.92193i) q^{17} +(-0.863760 + 4.27246i) q^{19} +(-5.09271 + 8.82084i) q^{21} +(-4.21480 - 7.30026i) q^{23} -6.46921 q^{27} +(4.29124 + 7.43265i) q^{29} -1.70874 q^{31} +(-2.60799 + 4.51718i) q^{33} -5.50608 q^{37} +9.23155 q^{39} +(4.05694 - 7.02683i) q^{41} +(-2.51363 + 4.35373i) q^{43} +(-0.674543 - 1.16834i) q^{47} +5.57183 q^{49} +(11.4801 + 19.8842i) q^{51} +(-1.10967 - 1.92201i) q^{53} +(9.38828 + 8.28544i) q^{57} +(-0.960774 + 1.66411i) q^{59} +(2.83047 + 4.90251i) q^{61} +(9.31098 + 16.1271i) q^{63} +(-4.64397 - 8.04360i) q^{67} -24.2152 q^{69} +(-2.94365 + 5.09854i) q^{71} +(1.63226 - 2.82716i) q^{73} +6.43807 q^{77} +(-2.08739 + 3.61546i) q^{79} +(-1.41381 + 2.44879i) q^{81} -6.30268 q^{83} +24.6543 q^{87} +(-2.73646 - 4.73968i) q^{89} +(-5.69723 - 9.86789i) q^{91} +(-2.45429 + 4.25096i) q^{93} +(3.99096 - 6.91255i) q^{97} +(4.76818 + 8.25873i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 10 q^{9} - 14 q^{19} - 8 q^{21} + 16 q^{29} + 8 q^{31} + 8 q^{39} + 26 q^{41} + 44 q^{49} + 26 q^{51} - 4 q^{59} + 2 q^{61} - 48 q^{69} - 2 q^{71} + 16 q^{79} + 26 q^{81} + 40 q^{89} - 4 q^{91} + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\) \(951\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.43632 2.48777i 0.829257 1.43632i −0.0693641 0.997591i \(-0.522097\pi\)
0.898622 0.438725i \(-0.144570\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.54568 −1.34014 −0.670070 0.742298i \(-0.733736\pi\)
−0.670070 + 0.742298i \(0.733736\pi\)
\(8\) 0 0
\(9\) −2.62601 4.54838i −0.875336 1.51613i
\(10\) 0 0
\(11\) −1.81575 −0.547470 −0.273735 0.961805i \(-0.588259\pi\)
−0.273735 + 0.961805i \(0.588259\pi\)
\(12\) 0 0
\(13\) 1.60681 + 2.78308i 0.445649 + 0.771887i 0.998097 0.0616606i \(-0.0196396\pi\)
−0.552448 + 0.833547i \(0.686306\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.99638 + 6.92193i −0.969264 + 1.67881i −0.271570 + 0.962419i \(0.587543\pi\)
−0.697694 + 0.716396i \(0.745790\pi\)
\(18\) 0 0
\(19\) −0.863760 + 4.27246i −0.198160 + 0.980170i
\(20\) 0 0
\(21\) −5.09271 + 8.82084i −1.11132 + 1.92486i
\(22\) 0 0
\(23\) −4.21480 7.30026i −0.878848 1.52221i −0.852607 0.522553i \(-0.824980\pi\)
−0.0262406 0.999656i \(-0.508354\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −6.46921 −1.24500
\(28\) 0 0
\(29\) 4.29124 + 7.43265i 0.796863 + 1.38021i 0.921649 + 0.388024i \(0.126842\pi\)
−0.124786 + 0.992184i \(0.539824\pi\)
\(30\) 0 0
\(31\) −1.70874 −0.306899 −0.153450 0.988156i \(-0.549038\pi\)
−0.153450 + 0.988156i \(0.549038\pi\)
\(32\) 0 0
\(33\) −2.60799 + 4.51718i −0.453994 + 0.786340i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.50608 −0.905193 −0.452597 0.891715i \(-0.649502\pi\)
−0.452597 + 0.891715i \(0.649502\pi\)
\(38\) 0 0
\(39\) 9.23155 1.47823
\(40\) 0 0
\(41\) 4.05694 7.02683i 0.633588 1.09741i −0.353224 0.935539i \(-0.614915\pi\)
0.986812 0.161868i \(-0.0517520\pi\)
\(42\) 0 0
\(43\) −2.51363 + 4.35373i −0.383325 + 0.663938i −0.991535 0.129838i \(-0.958554\pi\)
0.608211 + 0.793776i \(0.291888\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.674543 1.16834i −0.0983922 0.170420i 0.812627 0.582784i \(-0.198037\pi\)
−0.911019 + 0.412364i \(0.864703\pi\)
\(48\) 0 0
\(49\) 5.57183 0.795976
\(50\) 0 0
\(51\) 11.4801 + 19.8842i 1.60754 + 2.78434i
\(52\) 0 0
\(53\) −1.10967 1.92201i −0.152426 0.264009i 0.779693 0.626162i \(-0.215375\pi\)
−0.932119 + 0.362153i \(0.882042\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 9.38828 + 8.28544i 1.24351 + 1.09743i
\(58\) 0 0
\(59\) −0.960774 + 1.66411i −0.125082 + 0.216649i −0.921765 0.387749i \(-0.873253\pi\)
0.796683 + 0.604398i \(0.206586\pi\)
\(60\) 0 0
\(61\) 2.83047 + 4.90251i 0.362404 + 0.627702i 0.988356 0.152159i \(-0.0486227\pi\)
−0.625952 + 0.779862i \(0.715289\pi\)
\(62\) 0 0
\(63\) 9.31098 + 16.1271i 1.17307 + 2.03182i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.64397 8.04360i −0.567352 0.982682i −0.996827 0.0796032i \(-0.974635\pi\)
0.429475 0.903079i \(-0.358699\pi\)
\(68\) 0 0
\(69\) −24.2152 −2.91516
\(70\) 0 0
\(71\) −2.94365 + 5.09854i −0.349346 + 0.605086i −0.986134 0.165954i \(-0.946930\pi\)
0.636787 + 0.771040i \(0.280263\pi\)
\(72\) 0 0
\(73\) 1.63226 2.82716i 0.191042 0.330894i −0.754554 0.656238i \(-0.772147\pi\)
0.945596 + 0.325344i \(0.105480\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.43807 0.733687
\(78\) 0 0
\(79\) −2.08739 + 3.61546i −0.234850 + 0.406771i −0.959229 0.282630i \(-0.908793\pi\)
0.724379 + 0.689402i \(0.242126\pi\)
\(80\) 0 0
\(81\) −1.41381 + 2.44879i −0.157090 + 0.272087i
\(82\) 0 0
\(83\) −6.30268 −0.691809 −0.345905 0.938270i \(-0.612428\pi\)
−0.345905 + 0.938270i \(0.612428\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 24.6543 2.64322
\(88\) 0 0
\(89\) −2.73646 4.73968i −0.290064 0.502405i 0.683761 0.729706i \(-0.260343\pi\)
−0.973825 + 0.227301i \(0.927010\pi\)
\(90\) 0 0
\(91\) −5.69723 9.86789i −0.597232 1.03444i
\(92\) 0 0
\(93\) −2.45429 + 4.25096i −0.254499 + 0.440804i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.99096 6.91255i 0.405221 0.701863i −0.589126 0.808041i \(-0.700528\pi\)
0.994347 + 0.106178i \(0.0338613\pi\)
\(98\) 0 0
\(99\) 4.76818 + 8.25873i 0.479220 + 0.830034i
\(100\) 0 0
\(101\) 2.46731 + 4.27351i 0.245507 + 0.425230i 0.962274 0.272082i \(-0.0877123\pi\)
−0.716767 + 0.697313i \(0.754379\pi\)
\(102\) 0 0
\(103\) −5.56291 −0.548130 −0.274065 0.961711i \(-0.588368\pi\)
−0.274065 + 0.961711i \(0.588368\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.12251 −0.881907 −0.440953 0.897530i \(-0.645360\pi\)
−0.440953 + 0.897530i \(0.645360\pi\)
\(108\) 0 0
\(109\) −7.57225 + 13.1155i −0.725290 + 1.25624i 0.233565 + 0.972341i \(0.424961\pi\)
−0.958855 + 0.283898i \(0.908372\pi\)
\(110\) 0 0
\(111\) −7.90847 + 13.6979i −0.750638 + 1.30014i
\(112\) 0 0
\(113\) −4.46091 −0.419647 −0.209823 0.977739i \(-0.567289\pi\)
−0.209823 + 0.977739i \(0.567289\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 8.43899 14.6168i 0.780185 1.35132i
\(118\) 0 0
\(119\) 14.1699 24.5429i 1.29895 2.24985i
\(120\) 0 0
\(121\) −7.70304 −0.700277
\(122\) 0 0
\(123\) −11.6541 20.1855i −1.05082 1.82007i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −0.104025 0.180177i −0.00923073 0.0159881i 0.861373 0.507973i \(-0.169605\pi\)
−0.870604 + 0.491985i \(0.836272\pi\)
\(128\) 0 0
\(129\) 7.22073 + 12.5067i 0.635750 + 1.10115i
\(130\) 0 0
\(131\) 7.55409 13.0841i 0.660004 1.14316i −0.320610 0.947211i \(-0.603888\pi\)
0.980614 0.195950i \(-0.0627789\pi\)
\(132\) 0 0
\(133\) 3.06261 15.1488i 0.265562 1.31356i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.63439 + 4.56291i 0.225072 + 0.389835i 0.956341 0.292253i \(-0.0944051\pi\)
−0.731269 + 0.682089i \(0.761072\pi\)
\(138\) 0 0
\(139\) −3.38336 5.86016i −0.286973 0.497052i 0.686113 0.727495i \(-0.259316\pi\)
−0.973086 + 0.230443i \(0.925982\pi\)
\(140\) 0 0
\(141\) −3.87543 −0.326370
\(142\) 0 0
\(143\) −2.91757 5.05338i −0.243979 0.422585i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 8.00291 13.8614i 0.660069 1.14327i
\(148\) 0 0
\(149\) −4.83003 + 8.36586i −0.395692 + 0.685358i −0.993189 0.116513i \(-0.962828\pi\)
0.597498 + 0.801871i \(0.296162\pi\)
\(150\) 0 0
\(151\) −12.0256 −0.978631 −0.489316 0.872107i \(-0.662753\pi\)
−0.489316 + 0.872107i \(0.662753\pi\)
\(152\) 0 0
\(153\) 41.9781 3.39373
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.788721 + 1.36610i −0.0629468 + 0.109027i −0.895781 0.444495i \(-0.853383\pi\)
0.832835 + 0.553522i \(0.186716\pi\)
\(158\) 0 0
\(159\) −6.37537 −0.505600
\(160\) 0 0
\(161\) 14.9443 + 25.8844i 1.17778 + 2.03997i
\(162\) 0 0
\(163\) 16.0641 1.25823 0.629117 0.777310i \(-0.283416\pi\)
0.629117 + 0.777310i \(0.283416\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.56125 6.16826i −0.275578 0.477314i 0.694703 0.719297i \(-0.255536\pi\)
−0.970281 + 0.241982i \(0.922202\pi\)
\(168\) 0 0
\(169\) 1.33632 2.31458i 0.102794 0.178044i
\(170\) 0 0
\(171\) 21.7010 7.29081i 1.65952 0.557542i
\(172\) 0 0
\(173\) −8.58850 + 14.8757i −0.652972 + 1.13098i 0.329427 + 0.944181i \(0.393145\pi\)
−0.982398 + 0.186799i \(0.940189\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.75995 + 4.78038i 0.207451 + 0.359315i
\(178\) 0 0
\(179\) −3.38519 −0.253021 −0.126510 0.991965i \(-0.540378\pi\)
−0.126510 + 0.991965i \(0.540378\pi\)
\(180\) 0 0
\(181\) 10.4226 + 18.0524i 0.774704 + 1.34183i 0.934961 + 0.354751i \(0.115434\pi\)
−0.160257 + 0.987075i \(0.551232\pi\)
\(182\) 0 0
\(183\) 16.2618 1.20210
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7.25643 12.5685i 0.530643 0.919101i
\(188\) 0 0
\(189\) 22.9377 1.66847
\(190\) 0 0
\(191\) 4.58794 0.331972 0.165986 0.986128i \(-0.446919\pi\)
0.165986 + 0.986128i \(0.446919\pi\)
\(192\) 0 0
\(193\) 10.0596 17.4238i 0.724108 1.25419i −0.235232 0.971939i \(-0.575585\pi\)
0.959340 0.282252i \(-0.0910816\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.983439 0.0700671 0.0350336 0.999386i \(-0.488846\pi\)
0.0350336 + 0.999386i \(0.488846\pi\)
\(198\) 0 0
\(199\) 5.84473 + 10.1234i 0.414322 + 0.717626i 0.995357 0.0962520i \(-0.0306855\pi\)
−0.581035 + 0.813878i \(0.697352\pi\)
\(200\) 0 0
\(201\) −26.6809 −1.88192
\(202\) 0 0
\(203\) −15.2154 26.3538i −1.06791 1.84967i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −22.1362 + 38.3411i −1.53857 + 2.66489i
\(208\) 0 0
\(209\) 1.56837 7.75773i 0.108487 0.536613i
\(210\) 0 0
\(211\) −5.35987 + 9.28357i −0.368989 + 0.639107i −0.989408 0.145163i \(-0.953629\pi\)
0.620419 + 0.784270i \(0.286963\pi\)
\(212\) 0 0
\(213\) 8.45601 + 14.6462i 0.579396 + 1.00354i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 6.05865 0.411288
\(218\) 0 0
\(219\) −4.68888 8.12139i −0.316845 0.548792i
\(220\) 0 0
\(221\) −25.6857 −1.72781
\(222\) 0 0
\(223\) −10.2936 + 17.8291i −0.689313 + 1.19393i 0.282747 + 0.959195i \(0.408754\pi\)
−0.972060 + 0.234731i \(0.924579\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.47441 −0.496094 −0.248047 0.968748i \(-0.579789\pi\)
−0.248047 + 0.968748i \(0.579789\pi\)
\(228\) 0 0
\(229\) −11.0863 −0.732604 −0.366302 0.930496i \(-0.619376\pi\)
−0.366302 + 0.930496i \(0.619376\pi\)
\(230\) 0 0
\(231\) 9.24711 16.0165i 0.608415 1.05381i
\(232\) 0 0
\(233\) −9.16743 + 15.8785i −0.600578 + 1.04023i 0.392155 + 0.919899i \(0.371730\pi\)
−0.992734 + 0.120333i \(0.961604\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 5.99630 + 10.3859i 0.389501 + 0.674636i
\(238\) 0 0
\(239\) 11.8518 0.766630 0.383315 0.923618i \(-0.374782\pi\)
0.383315 + 0.923618i \(0.374782\pi\)
\(240\) 0 0
\(241\) −2.34317 4.05850i −0.150937 0.261431i 0.780635 0.624987i \(-0.214896\pi\)
−0.931572 + 0.363556i \(0.881562\pi\)
\(242\) 0 0
\(243\) −5.64247 9.77304i −0.361964 0.626941i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −13.2785 + 4.46112i −0.844890 + 0.283854i
\(248\) 0 0
\(249\) −9.05264 + 15.6796i −0.573688 + 0.993657i
\(250\) 0 0
\(251\) 0.0510129 + 0.0883569i 0.00321990 + 0.00557704i 0.867631 0.497209i \(-0.165642\pi\)
−0.864411 + 0.502786i \(0.832308\pi\)
\(252\) 0 0
\(253\) 7.65304 + 13.2555i 0.481143 + 0.833363i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.69424 13.3268i −0.479953 0.831303i 0.519782 0.854299i \(-0.326013\pi\)
−0.999736 + 0.0229953i \(0.992680\pi\)
\(258\) 0 0
\(259\) 19.5228 1.21309
\(260\) 0 0
\(261\) 22.5377 39.0364i 1.39505 2.41629i
\(262\) 0 0
\(263\) −9.78416 + 16.9467i −0.603317 + 1.04498i 0.388998 + 0.921239i \(0.372821\pi\)
−0.992315 + 0.123737i \(0.960512\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −15.7217 −0.962150
\(268\) 0 0
\(269\) −0.585331 + 1.01382i −0.0356883 + 0.0618139i −0.883318 0.468775i \(-0.844696\pi\)
0.847630 + 0.530588i \(0.178029\pi\)
\(270\) 0 0
\(271\) 6.40442 11.0928i 0.389041 0.673838i −0.603280 0.797529i \(-0.706140\pi\)
0.992321 + 0.123691i \(0.0394732\pi\)
\(272\) 0 0
\(273\) −32.7321 −1.98104
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −11.0122 −0.661656 −0.330828 0.943691i \(-0.607328\pi\)
−0.330828 + 0.943691i \(0.607328\pi\)
\(278\) 0 0
\(279\) 4.48717 + 7.77201i 0.268640 + 0.465298i
\(280\) 0 0
\(281\) −1.93481 3.35119i −0.115421 0.199915i 0.802527 0.596616i \(-0.203488\pi\)
−0.917948 + 0.396701i \(0.870155\pi\)
\(282\) 0 0
\(283\) −11.3099 + 19.5893i −0.672303 + 1.16446i 0.304947 + 0.952369i \(0.401361\pi\)
−0.977249 + 0.212093i \(0.931972\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −14.3846 + 24.9149i −0.849097 + 1.47068i
\(288\) 0 0
\(289\) −23.4421 40.6029i −1.37895 2.38840i
\(290\) 0 0
\(291\) −11.4646 19.8572i −0.672065 1.16405i
\(292\) 0 0
\(293\) 28.4482 1.66196 0.830980 0.556303i \(-0.187781\pi\)
0.830980 + 0.556303i \(0.187781\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 11.7465 0.681600
\(298\) 0 0
\(299\) 13.5448 23.4603i 0.783315 1.35674i
\(300\) 0 0
\(301\) 8.91251 15.4369i 0.513709 0.889770i
\(302\) 0 0
\(303\) 14.1754 0.814353
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7.05802 12.2248i 0.402822 0.697709i −0.591243 0.806494i \(-0.701363\pi\)
0.994065 + 0.108785i \(0.0346959\pi\)
\(308\) 0 0
\(309\) −7.99010 + 13.8393i −0.454541 + 0.787288i
\(310\) 0 0
\(311\) 16.4672 0.933768 0.466884 0.884319i \(-0.345377\pi\)
0.466884 + 0.884319i \(0.345377\pi\)
\(312\) 0 0
\(313\) −12.4917 21.6363i −0.706073 1.22295i −0.966303 0.257408i \(-0.917132\pi\)
0.260229 0.965547i \(-0.416202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.10281 + 1.91012i 0.0619399 + 0.107283i 0.895332 0.445398i \(-0.146938\pi\)
−0.833393 + 0.552681i \(0.813605\pi\)
\(318\) 0 0
\(319\) −7.79183 13.4958i −0.436259 0.755622i
\(320\) 0 0
\(321\) −13.1028 + 22.6947i −0.731328 + 1.26670i
\(322\) 0 0
\(323\) −26.1218 23.0533i −1.45345 1.28272i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 21.7523 + 37.6761i 1.20290 + 2.08349i
\(328\) 0 0
\(329\) 2.39171 + 4.14257i 0.131859 + 0.228387i
\(330\) 0 0
\(331\) −27.5415 −1.51382 −0.756910 0.653519i \(-0.773292\pi\)
−0.756910 + 0.653519i \(0.773292\pi\)
\(332\) 0 0
\(333\) 14.4590 + 25.0437i 0.792348 + 1.37239i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −9.20668 + 15.9464i −0.501520 + 0.868658i 0.498479 + 0.866902i \(0.333892\pi\)
−0.999998 + 0.00175582i \(0.999441\pi\)
\(338\) 0 0
\(339\) −6.40727 + 11.0977i −0.347995 + 0.602745i
\(340\) 0 0
\(341\) 3.10265 0.168018
\(342\) 0 0
\(343\) 5.06383 0.273421
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.1677 22.8072i 0.706881 1.22435i −0.259128 0.965843i \(-0.583435\pi\)
0.966009 0.258510i \(-0.0832315\pi\)
\(348\) 0 0
\(349\) −7.40515 −0.396388 −0.198194 0.980163i \(-0.563508\pi\)
−0.198194 + 0.980163i \(0.563508\pi\)
\(350\) 0 0
\(351\) −10.3948 18.0043i −0.554833 0.960999i
\(352\) 0 0
\(353\) 2.42201 0.128910 0.0644552 0.997921i \(-0.479469\pi\)
0.0644552 + 0.997921i \(0.479469\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −40.7048 70.5028i −2.15433 3.73140i
\(358\) 0 0
\(359\) −2.28083 + 3.95051i −0.120377 + 0.208500i −0.919917 0.392114i \(-0.871744\pi\)
0.799539 + 0.600614i \(0.205077\pi\)
\(360\) 0 0
\(361\) −17.5078 7.38076i −0.921465 0.388461i
\(362\) 0 0
\(363\) −11.0640 + 19.1634i −0.580710 + 1.00582i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5.26242 9.11478i −0.274696 0.475788i 0.695362 0.718659i \(-0.255244\pi\)
−0.970058 + 0.242872i \(0.921911\pi\)
\(368\) 0 0
\(369\) −42.6143 −2.21841
\(370\) 0 0
\(371\) 3.93455 + 6.81484i 0.204272 + 0.353809i
\(372\) 0 0
\(373\) −21.8633 −1.13204 −0.566019 0.824392i \(-0.691517\pi\)
−0.566019 + 0.824392i \(0.691517\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −13.7904 + 23.8857i −0.710243 + 1.23018i
\(378\) 0 0
\(379\) 9.33617 0.479567 0.239783 0.970826i \(-0.422924\pi\)
0.239783 + 0.970826i \(0.422924\pi\)
\(380\) 0 0
\(381\) −0.597652 −0.0306186
\(382\) 0 0
\(383\) 2.75581 4.77320i 0.140815 0.243899i −0.786989 0.616968i \(-0.788361\pi\)
0.927804 + 0.373068i \(0.121694\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 26.4032 1.34215
\(388\) 0 0
\(389\) −8.50605 14.7329i −0.431274 0.746988i 0.565709 0.824605i \(-0.308602\pi\)
−0.996983 + 0.0776163i \(0.975269\pi\)
\(390\) 0 0
\(391\) 67.3758 3.40734
\(392\) 0 0
\(393\) −21.7001 37.5857i −1.09463 1.89595i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −15.7110 + 27.2122i −0.788512 + 1.36574i 0.138366 + 0.990381i \(0.455815\pi\)
−0.926878 + 0.375362i \(0.877518\pi\)
\(398\) 0 0
\(399\) −33.2878 29.3775i −1.66647 1.47071i
\(400\) 0 0
\(401\) 13.4762 23.3415i 0.672971 1.16562i −0.304087 0.952644i \(-0.598351\pi\)
0.977058 0.212976i \(-0.0683155\pi\)
\(402\) 0 0
\(403\) −2.74563 4.75556i −0.136769 0.236891i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.99767 0.495566
\(408\) 0 0
\(409\) 17.0791 + 29.5819i 0.844509 + 1.46273i 0.886047 + 0.463596i \(0.153441\pi\)
−0.0415373 + 0.999137i \(0.513226\pi\)
\(410\) 0 0
\(411\) 15.1353 0.746569
\(412\) 0 0
\(413\) 3.40660 5.90040i 0.167628 0.290340i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −19.4383 −0.951899
\(418\) 0 0
\(419\) 36.5998 1.78802 0.894009 0.448049i \(-0.147881\pi\)
0.894009 + 0.448049i \(0.147881\pi\)
\(420\) 0 0
\(421\) −4.85007 + 8.40057i −0.236378 + 0.409419i −0.959672 0.281121i \(-0.909294\pi\)
0.723294 + 0.690540i \(0.242627\pi\)
\(422\) 0 0
\(423\) −3.54271 + 6.13615i −0.172252 + 0.298350i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −10.0359 17.3827i −0.485672 0.841209i
\(428\) 0 0
\(429\) −16.7622 −0.809287
\(430\) 0 0
\(431\) −14.4779 25.0764i −0.697375 1.20789i −0.969373 0.245591i \(-0.921018\pi\)
0.271999 0.962298i \(-0.412315\pi\)
\(432\) 0 0
\(433\) 3.72388 + 6.44994i 0.178958 + 0.309965i 0.941524 0.336946i \(-0.109394\pi\)
−0.762566 + 0.646911i \(0.776061\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 34.8306 11.7019i 1.66618 0.559779i
\(438\) 0 0
\(439\) −5.70008 + 9.87283i −0.272050 + 0.471204i −0.969387 0.245539i \(-0.921035\pi\)
0.697337 + 0.716744i \(0.254368\pi\)
\(440\) 0 0
\(441\) −14.6317 25.3428i −0.696746 1.20680i
\(442\) 0 0
\(443\) 3.84540 + 6.66042i 0.182700 + 0.316446i 0.942799 0.333361i \(-0.108183\pi\)
−0.760099 + 0.649807i \(0.774850\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 13.8749 + 24.0320i 0.656260 + 1.13668i
\(448\) 0 0
\(449\) 37.0590 1.74892 0.874460 0.485097i \(-0.161216\pi\)
0.874460 + 0.485097i \(0.161216\pi\)
\(450\) 0 0
\(451\) −7.36641 + 12.7590i −0.346871 + 0.600797i
\(452\) 0 0
\(453\) −17.2726 + 29.9170i −0.811537 + 1.40562i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.1647 −1.03682 −0.518411 0.855131i \(-0.673476\pi\)
−0.518411 + 0.855131i \(0.673476\pi\)
\(458\) 0 0
\(459\) 25.8534 44.7794i 1.20673 2.09012i
\(460\) 0 0
\(461\) 21.0779 36.5080i 0.981697 1.70035i 0.325914 0.945400i \(-0.394328\pi\)
0.655783 0.754949i \(-0.272339\pi\)
\(462\) 0 0
\(463\) 5.16758 0.240158 0.120079 0.992764i \(-0.461685\pi\)
0.120079 + 0.992764i \(0.461685\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.7096 0.588129 0.294064 0.955786i \(-0.404992\pi\)
0.294064 + 0.955786i \(0.404992\pi\)
\(468\) 0 0
\(469\) 16.4660 + 28.5200i 0.760331 + 1.31693i
\(470\) 0 0
\(471\) 2.26570 + 3.92431i 0.104398 + 0.180823i
\(472\) 0 0
\(473\) 4.56413 7.90530i 0.209859 0.363486i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.82803 + 10.0944i −0.266847 + 0.462193i
\(478\) 0 0
\(479\) 11.0555 + 19.1487i 0.505140 + 0.874928i 0.999982 + 0.00594539i \(0.00189249\pi\)
−0.494842 + 0.868983i \(0.664774\pi\)
\(480\) 0 0
\(481\) −8.84722 15.3238i −0.403399 0.698707i
\(482\) 0 0
\(483\) 85.8592 3.90673
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 28.3389 1.28416 0.642078 0.766639i \(-0.278072\pi\)
0.642078 + 0.766639i \(0.278072\pi\)
\(488\) 0 0
\(489\) 23.0731 39.9637i 1.04340 1.80722i
\(490\) 0 0
\(491\) −4.33288 + 7.50477i −0.195540 + 0.338686i −0.947077 0.321005i \(-0.895979\pi\)
0.751537 + 0.659691i \(0.229313\pi\)
\(492\) 0 0
\(493\) −68.5977 −3.08948
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.4372 18.0778i 0.468173 0.810900i
\(498\) 0 0
\(499\) 8.07784 13.9912i 0.361614 0.626334i −0.626613 0.779331i \(-0.715559\pi\)
0.988227 + 0.152997i \(0.0488925\pi\)
\(500\) 0 0
\(501\) −20.4603 −0.914099
\(502\) 0 0
\(503\) −12.8900 22.3262i −0.574737 0.995474i −0.996070 0.0885682i \(-0.971771\pi\)
0.421333 0.906906i \(-0.361562\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −3.83876 6.64893i −0.170485 0.295289i
\(508\) 0 0
\(509\) 6.15335 + 10.6579i 0.272743 + 0.472404i 0.969563 0.244842i \(-0.0787359\pi\)
−0.696821 + 0.717246i \(0.745403\pi\)
\(510\) 0 0
\(511\) −5.78747 + 10.0242i −0.256023 + 0.443444i
\(512\) 0 0
\(513\) 5.58784 27.6394i 0.246709 1.22031i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.22480 + 2.12142i 0.0538668 + 0.0933000i
\(518\) 0 0
\(519\) 24.6716 + 42.7325i 1.08296 + 1.87575i
\(520\) 0 0
\(521\) 17.0934 0.748875 0.374438 0.927252i \(-0.377836\pi\)
0.374438 + 0.927252i \(0.377836\pi\)
\(522\) 0 0
\(523\) 1.32368 + 2.29269i 0.0578806 + 0.100252i 0.893514 0.449036i \(-0.148232\pi\)
−0.835633 + 0.549288i \(0.814899\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.82878 11.8278i 0.297466 0.515227i
\(528\) 0 0
\(529\) −24.0292 + 41.6197i −1.04475 + 1.80955i
\(530\) 0 0
\(531\) 10.0920 0.437956
\(532\) 0 0
\(533\) 26.0750 1.12943
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −4.86220 + 8.42158i −0.209820 + 0.363418i
\(538\) 0 0
\(539\) −10.1171 −0.435773
\(540\) 0 0
\(541\) −5.06701 8.77631i −0.217848 0.377323i 0.736302 0.676653i \(-0.236570\pi\)
−0.954150 + 0.299330i \(0.903237\pi\)
\(542\) 0 0
\(543\) 59.8804 2.56972
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11.2375 + 19.4639i 0.480480 + 0.832217i 0.999749 0.0223944i \(-0.00712895\pi\)
−0.519269 + 0.854611i \(0.673796\pi\)
\(548\) 0 0
\(549\) 14.8656 25.7481i 0.634450 1.09890i
\(550\) 0 0
\(551\) −35.4623 + 11.9141i −1.51074 + 0.507559i
\(552\) 0 0
\(553\) 7.40121 12.8193i 0.314731 0.545131i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.22948 3.86157i −0.0944659 0.163620i 0.814920 0.579574i \(-0.196781\pi\)
−0.909386 + 0.415954i \(0.863448\pi\)
\(558\) 0 0
\(559\) −16.1557 −0.683313
\(560\) 0 0
\(561\) −20.8451 36.1047i −0.880079 1.52434i
\(562\) 0 0
\(563\) 10.0514 0.423616 0.211808 0.977311i \(-0.432065\pi\)
0.211808 + 0.977311i \(0.432065\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 5.01291 8.68261i 0.210522 0.364635i
\(568\) 0 0
\(569\) −5.41442 −0.226984 −0.113492 0.993539i \(-0.536204\pi\)
−0.113492 + 0.993539i \(0.536204\pi\)
\(570\) 0 0
\(571\) −24.0418 −1.00612 −0.503059 0.864252i \(-0.667792\pi\)
−0.503059 + 0.864252i \(0.667792\pi\)
\(572\) 0 0
\(573\) 6.58973 11.4138i 0.275290 0.476816i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.40727 0.0585855 0.0292928 0.999571i \(-0.490674\pi\)
0.0292928 + 0.999571i \(0.490674\pi\)
\(578\) 0 0
\(579\) −28.8976 50.0521i −1.20094 2.08010i
\(580\) 0 0
\(581\) 22.3473 0.927121
\(582\) 0 0
\(583\) 2.01489 + 3.48990i 0.0834484 + 0.144537i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.129501 + 0.224303i −0.00534510 + 0.00925798i −0.868686 0.495364i \(-0.835035\pi\)
0.863340 + 0.504622i \(0.168368\pi\)
\(588\) 0 0
\(589\) 1.47594 7.30054i 0.0608152 0.300813i
\(590\) 0 0
\(591\) 1.41253 2.44657i 0.0581037 0.100639i
\(592\) 0 0
\(593\) 1.48405 + 2.57044i 0.0609425 + 0.105555i 0.894887 0.446293i \(-0.147256\pi\)
−0.833944 + 0.551848i \(0.813923\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 33.5795 1.37432
\(598\) 0 0
\(599\) −23.7083 41.0640i −0.968696 1.67783i −0.699338 0.714791i \(-0.746522\pi\)
−0.269359 0.963040i \(-0.586812\pi\)
\(600\) 0 0
\(601\) −22.2047 −0.905747 −0.452874 0.891575i \(-0.649601\pi\)
−0.452874 + 0.891575i \(0.649601\pi\)
\(602\) 0 0
\(603\) −24.3902 + 42.2451i −0.993247 + 1.72035i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −37.6580 −1.52849 −0.764246 0.644925i \(-0.776888\pi\)
−0.764246 + 0.644925i \(0.776888\pi\)
\(608\) 0 0
\(609\) −87.4162 −3.54228
\(610\) 0 0
\(611\) 2.16772 3.75461i 0.0876968 0.151895i
\(612\) 0 0
\(613\) 22.1526 38.3694i 0.894734 1.54973i 0.0606013 0.998162i \(-0.480698\pi\)
0.834133 0.551563i \(-0.185969\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11.6190 20.1247i −0.467764 0.810190i 0.531558 0.847022i \(-0.321607\pi\)
−0.999321 + 0.0368317i \(0.988273\pi\)
\(618\) 0 0
\(619\) −28.8420 −1.15926 −0.579630 0.814880i \(-0.696803\pi\)
−0.579630 + 0.814880i \(0.696803\pi\)
\(620\) 0 0
\(621\) 27.2665 + 47.2269i 1.09417 + 1.89515i
\(622\) 0 0
\(623\) 9.70259 + 16.8054i 0.388726 + 0.673294i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −17.0468 15.0443i −0.680783 0.600812i
\(628\) 0 0
\(629\) 22.0044 38.1127i 0.877371 1.51965i
\(630\) 0 0
\(631\) 6.79323 + 11.7662i 0.270434 + 0.468406i 0.968973 0.247166i \(-0.0794994\pi\)
−0.698539 + 0.715572i \(0.746166\pi\)
\(632\) 0 0
\(633\) 15.3969 + 26.6683i 0.611973 + 1.05997i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 8.95287 + 15.5068i 0.354726 + 0.614403i
\(638\) 0 0
\(639\) 30.9201 1.22318
\(640\) 0 0
\(641\) 3.15731 5.46863i 0.124706 0.215998i −0.796912 0.604096i \(-0.793534\pi\)
0.921618 + 0.388098i \(0.126868\pi\)
\(642\) 0 0
\(643\) 6.85067 11.8657i 0.270164 0.467938i −0.698740 0.715376i \(-0.746255\pi\)
0.968904 + 0.247438i \(0.0795887\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.50227 0.334259 0.167129 0.985935i \(-0.446550\pi\)
0.167129 + 0.985935i \(0.446550\pi\)
\(648\) 0 0
\(649\) 1.74453 3.02161i 0.0684787 0.118609i
\(650\) 0 0
\(651\) 8.70214 15.0725i 0.341064 0.590740i
\(652\) 0 0
\(653\) −6.89369 −0.269771 −0.134885 0.990861i \(-0.543067\pi\)
−0.134885 + 0.990861i \(0.543067\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −17.1453 −0.668902
\(658\) 0 0
\(659\) 10.9585 + 18.9807i 0.426884 + 0.739384i 0.996594 0.0824611i \(-0.0262780\pi\)
−0.569711 + 0.821845i \(0.692945\pi\)
\(660\) 0 0
\(661\) 15.5768 + 26.9797i 0.605866 + 1.04939i 0.991914 + 0.126912i \(0.0405065\pi\)
−0.386048 + 0.922479i \(0.626160\pi\)
\(662\) 0 0
\(663\) −36.8928 + 63.9001i −1.43280 + 2.48168i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 36.1735 62.6543i 1.40064 2.42598i
\(668\) 0 0
\(669\) 29.5699 + 51.2165i 1.14324 + 1.98014i
\(670\) 0 0
\(671\) −5.13943 8.90175i −0.198405 0.343648i
\(672\) 0 0
\(673\) −24.5193 −0.945150 −0.472575 0.881290i \(-0.656675\pi\)
−0.472575 + 0.881290i \(0.656675\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.89395 0.303389 0.151695 0.988427i \(-0.451527\pi\)
0.151695 + 0.988427i \(0.451527\pi\)
\(678\) 0 0
\(679\) −14.1507 + 24.5097i −0.543053 + 0.940595i
\(680\) 0 0
\(681\) −10.7356 + 18.5946i −0.411390 + 0.712548i
\(682\) 0 0
\(683\) 44.3352 1.69644 0.848220 0.529644i \(-0.177675\pi\)
0.848220 + 0.529644i \(0.177675\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −15.9234 + 27.5802i −0.607517 + 1.05225i
\(688\) 0 0
\(689\) 3.56607 6.17662i 0.135857 0.235311i
\(690\) 0 0
\(691\) 44.2501 1.68335 0.841676 0.539982i \(-0.181569\pi\)
0.841676 + 0.539982i \(0.181569\pi\)
\(692\) 0 0
\(693\) −16.9064 29.2828i −0.642222 1.11236i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 32.4262 + 56.1638i 1.22823 + 2.12735i
\(698\) 0 0
\(699\) 26.3347 + 45.6130i 0.996068 + 1.72524i
\(700\) 0 0
\(701\) −9.27840 + 16.0707i −0.350440 + 0.606980i −0.986327 0.164802i \(-0.947301\pi\)
0.635886 + 0.771783i \(0.280635\pi\)
\(702\) 0 0
\(703\) 4.75593 23.5245i 0.179373 0.887243i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.74830 15.1525i −0.329014 0.569868i
\(708\) 0 0
\(709\) −21.4349 37.1263i −0.805003 1.39431i −0.916289 0.400518i \(-0.868830\pi\)
0.111285 0.993788i \(-0.464503\pi\)
\(710\) 0 0
\(711\) 21.9260 0.822289
\(712\) 0 0
\(713\) 7.20202 + 12.4743i 0.269718 + 0.467165i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 17.0230 29.4846i 0.635734 1.10112i
\(718\) 0 0
\(719\) 17.5024 30.3150i 0.652728 1.13056i −0.329730 0.944075i \(-0.606958\pi\)
0.982458 0.186483i \(-0.0597088\pi\)
\(720\) 0 0
\(721\) 19.7243 0.734571
\(722\) 0 0
\(723\) −13.4622 −0.500663
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0.252064 0.436587i 0.00934852 0.0161921i −0.861313 0.508074i \(-0.830358\pi\)
0.870662 + 0.491882i \(0.163691\pi\)
\(728\) 0 0
\(729\) −40.9003 −1.51483
\(730\) 0 0
\(731\) −20.0908 34.7983i −0.743086 1.28706i
\(732\) 0 0
\(733\) −26.5745 −0.981553 −0.490777 0.871285i \(-0.663287\pi\)
−0.490777 + 0.871285i \(0.663287\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.43231 + 14.6052i 0.310608 + 0.537989i
\(738\) 0 0
\(739\) −12.8643 + 22.2817i −0.473222 + 0.819645i −0.999530 0.0306492i \(-0.990243\pi\)
0.526308 + 0.850294i \(0.323576\pi\)
\(740\) 0 0
\(741\) −7.97384 + 39.4414i −0.292926 + 1.44892i
\(742\) 0 0
\(743\) −2.13851 + 3.70400i −0.0784542 + 0.135887i −0.902583 0.430516i \(-0.858332\pi\)
0.824129 + 0.566402i \(0.191665\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 16.5509 + 28.6670i 0.605565 + 1.04887i
\(748\) 0 0
\(749\) 32.3455 1.18188
\(750\) 0 0
\(751\) −7.26869 12.5897i −0.265238 0.459406i 0.702388 0.711795i \(-0.252117\pi\)
−0.967626 + 0.252388i \(0.918784\pi\)
\(752\) 0 0
\(753\) 0.293082 0.0106805
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −8.16844 + 14.1482i −0.296887 + 0.514224i −0.975422 0.220345i \(-0.929282\pi\)
0.678535 + 0.734568i \(0.262615\pi\)
\(758\) 0 0
\(759\) 43.9687 1.59596
\(760\) 0 0
\(761\) −21.9812 −0.796819 −0.398409 0.917208i \(-0.630438\pi\)
−0.398409 + 0.917208i \(0.630438\pi\)
\(762\) 0 0
\(763\) 26.8488 46.5034i 0.971990 1.68354i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.17513 −0.222971
\(768\) 0 0
\(769\) −23.1977 40.1796i −0.836530 1.44891i −0.892778 0.450496i \(-0.851247\pi\)
0.0562477 0.998417i \(-0.482086\pi\)
\(770\) 0 0
\(771\) −44.2054 −1.59202
\(772\) 0 0
\(773\) −12.4954 21.6426i −0.449428 0.778431i 0.548921 0.835874i \(-0.315039\pi\)
−0.998349 + 0.0574426i \(0.981705\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 28.0409 48.5682i 1.00596 1.74238i
\(778\) 0 0
\(779\) 26.5176 + 23.4026i 0.950093 + 0.838486i
\(780\) 0 0
\(781\) 5.34493 9.25769i 0.191257 0.331266i
\(782\) 0 0
\(783\) −27.7609 48.0834i −0.992095 1.71836i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 36.4986 1.30103 0.650517 0.759492i \(-0.274552\pi\)
0.650517 + 0.759492i \(0.274552\pi\)
\(788\) 0 0
\(789\) 28.1063 + 48.6815i 1.00061 + 1.73311i
\(790\) 0 0
\(791\) 15.8169 0.562385
\(792\) 0 0
\(793\) −9.09604 + 15.7548i −0.323010 + 0.559470i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.9753 0.424188 0.212094 0.977249i \(-0.431972\pi\)
0.212094 + 0.977249i \(0.431972\pi\)
\(798\) 0 0
\(799\) 10.7829 0.381472
\(800\) 0 0
\(801\) −14.3719 + 24.8929i −0.507807 + 0.879547i
\(802\) 0 0
\(803\) −2.96378 + 5.13342i −0.104590 + 0.181154i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.68144 + 2.91234i 0.0591895 + 0.102519i
\(808\) 0 0
\(809\) 29.4153 1.03419 0.517093 0.855929i \(-0.327014\pi\)
0.517093 + 0.855929i \(0.327014\pi\)
\(810\) 0 0
\(811\) −27.4062 47.4690i −0.962363 1.66686i −0.716538 0.697548i \(-0.754274\pi\)
−0.245825 0.969314i \(-0.579059\pi\)
\(812\) 0 0
\(813\) −18.3975 31.8655i −0.645230 1.11757i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −16.4300 14.5000i −0.574812 0.507289i
\(818\) 0 0
\(819\) −29.9219 + 51.8263i −1.04556 + 1.81096i
\(820\) 0 0
\(821\) 4.32200 + 7.48592i 0.150839 + 0.261260i 0.931536 0.363649i \(-0.118469\pi\)
−0.780697 + 0.624909i \(0.785136\pi\)
\(822\) 0 0
\(823\) 20.3004 + 35.1614i 0.707628 + 1.22565i 0.965735 + 0.259532i \(0.0835682\pi\)
−0.258106 + 0.966117i \(0.583098\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.946864 1.64002i −0.0329257 0.0570290i 0.849093 0.528243i \(-0.177149\pi\)
−0.882019 + 0.471214i \(0.843816\pi\)
\(828\) 0 0
\(829\) −54.2488 −1.88414 −0.942070 0.335416i \(-0.891123\pi\)
−0.942070 + 0.335416i \(0.891123\pi\)
\(830\) 0 0
\(831\) −15.8169 + 27.3957i −0.548683 + 0.950347i
\(832\) 0 0
\(833\) −22.2671 + 38.5678i −0.771511 + 1.33630i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 11.0542 0.382090
\(838\) 0 0
\(839\) −19.4931 + 33.7630i −0.672976 + 1.16563i 0.304080 + 0.952647i \(0.401651\pi\)
−0.977056 + 0.212982i \(0.931682\pi\)
\(840\) 0 0
\(841\) −22.3295 + 38.6758i −0.769982 + 1.33365i
\(842\) 0 0
\(843\) −11.1160 −0.382855
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 27.3125 0.938469
\(848\) 0 0
\(849\) 32.4891 + 56.2728i 1.11502 + 1.93128i
\(850\) 0 0
\(851\) 23.2070 + 40.1958i 0.795527 + 1.37789i
\(852\) 0 0
\(853\) −15.3058 + 26.5103i −0.524059 + 0.907697i 0.475549 + 0.879689i \(0.342250\pi\)
−0.999608 + 0.0280076i \(0.991084\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.73913 + 11.6725i −0.230204 + 0.398726i −0.957868 0.287208i \(-0.907273\pi\)
0.727664 + 0.685934i \(0.240606\pi\)
\(858\) 0 0
\(859\) 4.96411 + 8.59809i 0.169373 + 0.293363i 0.938200 0.346094i \(-0.112492\pi\)
−0.768826 + 0.639458i \(0.779159\pi\)
\(860\) 0 0
\(861\) 41.3217 + 71.5713i 1.40824 + 2.43914i
\(862\) 0 0
\(863\) 36.8000 1.25269 0.626344 0.779547i \(-0.284551\pi\)
0.626344 + 0.779547i \(0.284551\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −134.681 −4.57400
\(868\) 0 0
\(869\) 3.79018 6.56479i 0.128573 0.222695i
\(870\) 0 0
\(871\) 14.9240 25.8491i 0.505679 0.875862i
\(872\) 0 0
\(873\) −41.9212 −1.41882
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.86520 4.96267i 0.0967509 0.167577i −0.813587 0.581443i \(-0.802488\pi\)
0.910338 + 0.413866i \(0.135822\pi\)
\(878\) 0 0
\(879\) 40.8605 70.7725i 1.37819 2.38710i
\(880\) 0 0
\(881\) 21.5926 0.727474 0.363737 0.931502i \(-0.381501\pi\)
0.363737 + 0.931502i \(0.381501\pi\)
\(882\) 0 0
\(883\) 20.8368 + 36.0904i 0.701214 + 1.21454i 0.968040 + 0.250794i \(0.0806917\pi\)
−0.266826 + 0.963745i \(0.585975\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25.3951 43.9856i −0.852685 1.47689i −0.878776 0.477234i \(-0.841639\pi\)
0.0260915 0.999660i \(-0.491694\pi\)
\(888\) 0 0
\(889\) 0.368839 + 0.638849i 0.0123705 + 0.0214263i
\(890\) 0 0
\(891\) 2.56713 4.44639i 0.0860019 0.148960i
\(892\) 0 0
\(893\) 5.57434 1.87279i 0.186538 0.0626705i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −38.9092 67.3927i −1.29914 2.25018i
\(898\) 0 0
\(899\) −7.33263 12.7005i −0.244557 0.423585i
\(900\) 0 0
\(901\) 17.7387 0.590962
\(902\) 0 0
\(903\) −25.6024 44.3446i −0.851994 1.47570i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −10.0832 + 17.4646i −0.334806 + 0.579902i −0.983448 0.181193i \(-0.942004\pi\)
0.648641 + 0.761094i \(0.275338\pi\)
\(908\) 0 0
\(909\) 12.9584 22.4445i 0.429802 0.744439i
\(910\) 0 0
\(911\) 47.2962 1.56699 0.783496 0.621397i \(-0.213434\pi\)
0.783496 + 0.621397i \(0.213434\pi\)
\(912\) 0 0
\(913\) 11.4441 0.378745
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −26.7844 + 46.3919i −0.884498 + 1.53200i
\(918\) 0 0
\(919\) −33.8678 −1.11719 −0.558597 0.829439i \(-0.688660\pi\)
−0.558597 + 0.829439i \(0.688660\pi\)
\(920\) 0 0
\(921\) −20.2751 35.1175i −0.668087 1.15716i
\(922\) 0 0
\(923\) −18.9195 −0.622744
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 14.6083 + 25.3022i 0.479798 + 0.831035i
\(928\) 0 0
\(929\) 0.457146 0.791800i 0.0149985 0.0259781i −0.858429 0.512933i \(-0.828559\pi\)
0.873427 + 0.486955i \(0.161892\pi\)
\(930\) 0 0
\(931\) −4.81272 + 23.8054i −0.157731 + 0.780191i
\(932\) 0 0
\(933\) 23.6521 40.9666i 0.774334 1.34119i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 25.9915 + 45.0186i 0.849106 + 1.47069i 0.882007 + 0.471236i \(0.156192\pi\)
−0.0329014 + 0.999459i \(0.510475\pi\)
\(938\) 0 0
\(939\) −71.7682 −2.34207
\(940\) 0 0
\(941\) 12.4228 + 21.5169i 0.404972 + 0.701432i 0.994318 0.106449i \(-0.0339480\pi\)
−0.589346 + 0.807880i \(0.700615\pi\)
\(942\) 0 0
\(943\) −68.3969 −2.22731
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13.8588 + 24.0042i −0.450352 + 0.780032i −0.998408 0.0564097i \(-0.982035\pi\)
0.548056 + 0.836442i \(0.315368\pi\)
\(948\) 0 0
\(949\) 10.4909 0.340550
\(950\) 0 0
\(951\) 6.33593 0.205457
\(952\) 0 0
\(953\) 8.29103 14.3605i 0.268573 0.465182i −0.699921 0.714221i \(-0.746781\pi\)
0.968494 + 0.249039i \(0.0801147\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −44.7661 −1.44708
\(958\) 0 0
\(959\) −9.34072 16.1786i −0.301627 0.522434i
\(960\) 0 0
\(961\) −28.0802 −0.905813
\(962\) 0 0
\(963\) 23.9558 + 41.4926i 0.771964 + 1.33708i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −9.56159 + 16.5612i −0.307480 + 0.532571i −0.977810 0.209492i \(-0.932819\pi\)
0.670330 + 0.742063i \(0.266152\pi\)
\(968\) 0 0
\(969\) −94.8704 + 31.8732i −3.04767 + 1.02392i
\(970\) 0 0
\(971\) 7.56801 13.1082i 0.242869 0.420661i −0.718661 0.695360i \(-0.755245\pi\)
0.961530 + 0.274699i \(0.0885782\pi\)
\(972\) 0 0
\(973\) 11.9963 + 20.7782i 0.384584 + 0.666120i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.83858 −0.186793 −0.0933964 0.995629i \(-0.529772\pi\)
−0.0933964 + 0.995629i \(0.529772\pi\)
\(978\) 0 0
\(979\) 4.96873 + 8.60609i 0.158801 + 0.275052i
\(980\) 0 0
\(981\) 79.5391 2.53949
\(982\) 0 0
\(983\) −10.3479 + 17.9231i −0.330047 + 0.571657i −0.982521 0.186154i \(-0.940398\pi\)
0.652474 + 0.757811i \(0.273731\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 13.7410 0.437381
\(988\) 0 0
\(989\) 42.3778 1.34754
\(990\) 0 0
\(991\) −22.9776 + 39.7984i −0.729907 + 1.26424i 0.227014 + 0.973891i \(0.427104\pi\)
−0.956922 + 0.290345i \(0.906230\pi\)
\(992\) 0 0
\(993\) −39.5584 + 68.5171i −1.25535 + 2.17432i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.64870 + 6.31974i 0.115556 + 0.200148i 0.918002 0.396576i \(-0.129802\pi\)
−0.802446 + 0.596725i \(0.796468\pi\)
\(998\) 0 0
\(999\) 35.6200 1.12697
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.2.i.g.201.10 20
5.2 odd 4 380.2.r.a.49.1 20
5.3 odd 4 380.2.r.a.49.10 yes 20
5.4 even 2 inner 1900.2.i.g.201.1 20
15.2 even 4 3420.2.bj.c.1189.4 20
15.8 even 4 3420.2.bj.c.1189.10 20
19.7 even 3 inner 1900.2.i.g.501.10 20
95.7 odd 12 380.2.r.a.349.10 yes 20
95.64 even 6 inner 1900.2.i.g.501.1 20
95.83 odd 12 380.2.r.a.349.1 yes 20
285.83 even 12 3420.2.bj.c.2629.4 20
285.197 even 12 3420.2.bj.c.2629.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.r.a.49.1 20 5.2 odd 4
380.2.r.a.49.10 yes 20 5.3 odd 4
380.2.r.a.349.1 yes 20 95.83 odd 12
380.2.r.a.349.10 yes 20 95.7 odd 12
1900.2.i.g.201.1 20 5.4 even 2 inner
1900.2.i.g.201.10 20 1.1 even 1 trivial
1900.2.i.g.501.1 20 95.64 even 6 inner
1900.2.i.g.501.10 20 19.7 even 3 inner
3420.2.bj.c.1189.4 20 15.2 even 4
3420.2.bj.c.1189.10 20 15.8 even 4
3420.2.bj.c.2629.4 20 285.83 even 12
3420.2.bj.c.2629.10 20 285.197 even 12