Properties

Label 1900.2.i.g
Level $1900$
Weight $2$
Character orbit 1900.i
Analytic conductor $15.172$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1900,2,Mod(201,1900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1900, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1900.201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1900.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1715763840\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 20 x^{18} + 261 x^{16} + 1994 x^{14} + 11074 x^{12} + 39211 x^{10} + 99376 x^{8} + 134299 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 380)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{14} q^{3} + (\beta_{18} + \beta_{15}) q^{7} + (\beta_{11} + \beta_{4} - 1) q^{9} + \beta_{8} q^{11} + (\beta_{16} - \beta_{10}) q^{13} + (\beta_{18} + \beta_{9} + \beta_{5}) q^{17} + (\beta_{13} + \beta_{12} - \beta_{11} - 1) q^{19}+ \cdots + (\beta_{13} + 2 \beta_{12} - 2 \beta_{11} + \cdots + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 10 q^{9} - 14 q^{19} - 8 q^{21} + 16 q^{29} + 8 q^{31} + 8 q^{39} + 26 q^{41} + 44 q^{49} + 26 q^{51} - 4 q^{59} + 2 q^{61} - 48 q^{69} - 2 q^{71} + 16 q^{79} + 26 q^{81} + 40 q^{89} - 4 q^{91} + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} + 20 x^{18} + 261 x^{16} + 1994 x^{14} + 11074 x^{12} + 39211 x^{10} + 99376 x^{8} + 134299 x^{6} + \cdots + 4096 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 257269301703 \nu^{18} + 4826223210105 \nu^{16} + 61286511972345 \nu^{14} + \cdots - 63\!\cdots\!36 ) / 16\!\cdots\!37 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 71197437104086 \nu^{18} + \cdots - 55\!\cdots\!14 ) / 13\!\cdots\!71 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 58379368812683 \nu^{18} + \cdots - 23\!\cdots\!96 ) / 10\!\cdots\!68 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 46\!\cdots\!85 \nu^{19} + \cdots + 21\!\cdots\!40 \nu ) / 35\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 63\!\cdots\!85 \nu^{18} + \cdots - 25\!\cdots\!84 ) / 88\!\cdots\!44 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 108802723986440 \nu^{18} + \cdots - 49\!\cdots\!91 ) / 13\!\cdots\!71 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 123113231093090 \nu^{18} + \cdots + 29\!\cdots\!75 ) / 13\!\cdots\!71 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 135352029273473 \nu^{19} + \cdots - 33\!\cdots\!89 \nu ) / 55\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 149437719142871 \nu^{19} + \cdots - 22\!\cdots\!45 \nu ) / 55\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 54263059985435 \nu^{18} + \cdots + 12\!\cdots\!72 ) / 26\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 91\!\cdots\!17 \nu^{18} + \cdots + 22\!\cdots\!52 ) / 44\!\cdots\!72 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 21\!\cdots\!13 \nu^{18} + \cdots + 91\!\cdots\!84 ) / 88\!\cdots\!44 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 58379368812683 \nu^{19} + \cdots + 13\!\cdots\!64 \nu ) / 10\!\cdots\!68 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 352957477246353 \nu^{19} + \cdots + 15\!\cdots\!77 \nu ) / 27\!\cdots\!42 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 395664181329051 \nu^{19} + \cdots + 31\!\cdots\!37 \nu ) / 27\!\cdots\!42 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 86\!\cdots\!67 \nu^{19} + \cdots - 35\!\cdots\!92 \nu ) / 35\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 44\!\cdots\!75 \nu^{19} + \cdots - 12\!\cdots\!08 \nu ) / 17\!\cdots\!88 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 99\!\cdots\!71 \nu^{19} + \cdots - 25\!\cdots\!64 \nu ) / 17\!\cdots\!88 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{11} - 4\beta_{4} - \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{19} - \beta_{18} + \beta_{16} - \beta_{15} + 6\beta_{14} - 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{13} - \beta_{12} + 9\beta_{11} + 2\beta_{7} - \beta_{6} + 25\beta_{4} - 25 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -10\beta_{19} + 11\beta_{18} + 3\beta_{17} - 40\beta_{14} + 3\beta_{10} + 3\beta_{9} + 3\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -16\beta_{8} - 27\beta_{7} - 8\beta_{3} + 72\beta_{2} + 177 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -88\beta_{16} + 99\beta_{15} - 40\beta_{10} - 46\beta_{9} + 283\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 279 \beta_{13} + 47 \beta_{12} - 569 \beta_{11} + 174 \beta_{8} + 174 \beta_{6} - 1329 \beta_{4} + \cdots - 569 \beta_{2} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 743 \beta_{19} - 848 \beta_{18} - 395 \beta_{17} + 743 \beta_{16} - 848 \beta_{15} + 2083 \beta_{14} + \cdots - 2083 \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -2613\beta_{13} - 221\beta_{12} + 4522\beta_{11} + 2613\beta_{7} - 1649\beta_{6} + 10318\beta_{4} - 10318 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 6171 \beta_{19} + 7135 \beta_{18} + 3519 \beta_{17} - 15785 \beta_{14} + 3519 \beta_{10} + \cdots + 5005 \beta_{5} \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -14695\beta_{8} - 23316\beta_{7} - 644\beta_{3} + 36226\beta_{2} + 81771 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( -50921\beta_{16} + 59542\beta_{15} - 30034\beta_{10} - 45988\beta_{9} + 122286\beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 202439 \beta_{13} - 2400 \beta_{12} - 292291 \beta_{11} + 126943 \beta_{8} + 126943 \beta_{6} + \cdots - 292291 \beta_{2} \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 419234 \beta_{19} - 494730 \beta_{18} - 251486 \beta_{17} + 419234 \beta_{16} - 494730 \beta_{15} + \cdots - 963263 \beta_1 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 1728520 \beta_{13} + 68340 \beta_{12} + 2371957 \beta_{11} + 1728520 \beta_{7} - 1077998 \beta_{6} + \cdots - 5318130 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 3449955 \beta_{19} + 4100477 \beta_{18} + 2087656 \beta_{17} - 7683002 \beta_{14} + \cdots + 3525380 \beta_{5} \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( -9062991\beta_{8} - 14601192\beta_{7} + 862627\beta_{3} + 19333911\beta_{2} + 43320969 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( -28396902\beta_{16} + 33935103\beta_{15} - 17263355\beta_{10} - 30065011\beta_{9} + 61849398\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\) \(951\)
\(\chi(n)\) \(1\) \(-1 + \beta_{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
201.1
1.43632 + 2.48777i
1.21562 + 2.10552i
1.00667 + 1.74361i
0.628167 + 1.08802i
0.226426 + 0.392182i
−0.226426 0.392182i
−0.628167 1.08802i
−1.00667 1.74361i
−1.21562 2.10552i
−1.43632 2.48777i
1.43632 2.48777i
1.21562 2.10552i
1.00667 1.74361i
0.628167 1.08802i
0.226426 0.392182i
−0.226426 + 0.392182i
−0.628167 + 1.08802i
−1.00667 + 1.74361i
−1.21562 + 2.10552i
−1.43632 + 2.48777i
0 −1.43632 + 2.48777i 0 0 0 3.54568 0 −2.62601 4.54838i 0
201.2 0 −1.21562 + 2.10552i 0 0 0 0.663818 0 −1.45548 2.52097i 0
201.3 0 −1.00667 + 1.74361i 0 0 0 −1.34403 0 −0.526784 0.912416i 0
201.4 0 −0.628167 + 1.08802i 0 0 0 −4.97100 0 0.710812 + 1.23116i 0
201.5 0 −0.226426 + 0.392182i 0 0 0 2.54366 0 1.39746 + 2.42048i 0
201.6 0 0.226426 0.392182i 0 0 0 −2.54366 0 1.39746 + 2.42048i 0
201.7 0 0.628167 1.08802i 0 0 0 4.97100 0 0.710812 + 1.23116i 0
201.8 0 1.00667 1.74361i 0 0 0 1.34403 0 −0.526784 0.912416i 0
201.9 0 1.21562 2.10552i 0 0 0 −0.663818 0 −1.45548 2.52097i 0
201.10 0 1.43632 2.48777i 0 0 0 −3.54568 0 −2.62601 4.54838i 0
501.1 0 −1.43632 2.48777i 0 0 0 3.54568 0 −2.62601 + 4.54838i 0
501.2 0 −1.21562 2.10552i 0 0 0 0.663818 0 −1.45548 + 2.52097i 0
501.3 0 −1.00667 1.74361i 0 0 0 −1.34403 0 −0.526784 + 0.912416i 0
501.4 0 −0.628167 1.08802i 0 0 0 −4.97100 0 0.710812 1.23116i 0
501.5 0 −0.226426 0.392182i 0 0 0 2.54366 0 1.39746 2.42048i 0
501.6 0 0.226426 + 0.392182i 0 0 0 −2.54366 0 1.39746 2.42048i 0
501.7 0 0.628167 + 1.08802i 0 0 0 4.97100 0 0.710812 1.23116i 0
501.8 0 1.00667 + 1.74361i 0 0 0 1.34403 0 −0.526784 + 0.912416i 0
501.9 0 1.21562 + 2.10552i 0 0 0 −0.663818 0 −1.45548 + 2.52097i 0
501.10 0 1.43632 + 2.48777i 0 0 0 −3.54568 0 −2.62601 + 4.54838i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 201.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
19.c even 3 1 inner
95.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1900.2.i.g 20
5.b even 2 1 inner 1900.2.i.g 20
5.c odd 4 2 380.2.r.a 20
15.e even 4 2 3420.2.bj.c 20
19.c even 3 1 inner 1900.2.i.g 20
95.i even 6 1 inner 1900.2.i.g 20
95.m odd 12 2 380.2.r.a 20
285.v even 12 2 3420.2.bj.c 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
380.2.r.a 20 5.c odd 4 2
380.2.r.a 20 95.m odd 12 2
1900.2.i.g 20 1.a even 1 1 trivial
1900.2.i.g 20 5.b even 2 1 inner
1900.2.i.g 20 19.c even 3 1 inner
1900.2.i.g 20 95.i even 6 1 inner
3420.2.bj.c 20 15.e even 4 2
3420.2.bj.c 20 285.v even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{20} + 20 T_{3}^{18} + 261 T_{3}^{16} + 1994 T_{3}^{14} + 11074 T_{3}^{12} + 39211 T_{3}^{10} + \cdots + 4096 \) acting on \(S_{2}^{\mathrm{new}}(1900, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( T^{20} + 20 T^{18} + \cdots + 4096 \) Copy content Toggle raw display
$5$ \( T^{20} \) Copy content Toggle raw display
$7$ \( (T^{10} - 46 T^{8} + \cdots - 1600)^{2} \) Copy content Toggle raw display
$11$ \( (T^{5} - 27 T^{3} + \cdots + 148)^{4} \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 13051691536 \) Copy content Toggle raw display
$17$ \( T^{20} + \cdots + 9721171216 \) Copy content Toggle raw display
$19$ \( (T^{10} + 7 T^{9} + \cdots + 2476099)^{2} \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 39691260010000 \) Copy content Toggle raw display
$29$ \( (T^{10} - 8 T^{9} + \cdots + 28561)^{2} \) Copy content Toggle raw display
$31$ \( (T^{5} - 2 T^{4} + \cdots + 388)^{4} \) Copy content Toggle raw display
$37$ \( (T^{10} - 86 T^{8} + \cdots - 518400)^{2} \) Copy content Toggle raw display
$41$ \( (T^{10} - 13 T^{9} + \cdots + 1368900)^{2} \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots + 122963703210000 \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 2998219536 \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 591687332741376 \) Copy content Toggle raw display
$59$ \( (T^{10} + 2 T^{9} + 62 T^{8} + \cdots + 1)^{2} \) Copy content Toggle raw display
$61$ \( (T^{10} - T^{9} + \cdots + 3073009)^{2} \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 805854925357056 \) Copy content Toggle raw display
$71$ \( (T^{10} + T^{9} + \cdots + 640140601)^{2} \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 25628906250000 \) Copy content Toggle raw display
$79$ \( (T^{10} - 8 T^{9} + \cdots + 233967616)^{2} \) Copy content Toggle raw display
$83$ \( (T^{10} - 323 T^{8} + \cdots - 54464400)^{2} \) Copy content Toggle raw display
$89$ \( (T^{10} - 20 T^{9} + \cdots + 5314993216)^{2} \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 385136700010000 \) Copy content Toggle raw display
show more
show less