Properties

 Label 1900.2.c.c.1749.2 Level $1900$ Weight $2$ Character 1900.1749 Analytic conductor $15.172$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1900,2,Mod(1749,1900)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1900, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1900.1749");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1900 = 2^{2} \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1900.c (of order $$2$$, degree $$1$$, not minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$15.1715763840$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 380) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

 Embedding label 1749.2 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 1900.1749 Dual form 1900.2.c.c.1749.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+2.00000i q^{7} +3.00000 q^{9} +O(q^{10})$$ $$q+2.00000i q^{7} +3.00000 q^{9} -4.00000 q^{11} -4.00000i q^{13} -6.00000i q^{17} -1.00000 q^{19} -2.00000i q^{23} +6.00000 q^{29} -8.00000 q^{31} -4.00000i q^{37} +6.00000 q^{41} -6.00000i q^{43} -6.00000i q^{47} +3.00000 q^{49} +8.00000i q^{53} +12.0000 q^{59} +6.00000 q^{61} +6.00000i q^{63} -10.0000i q^{73} -8.00000i q^{77} +8.00000 q^{79} +9.00000 q^{81} +14.0000i q^{83} -14.0000 q^{89} +8.00000 q^{91} -16.0000i q^{97} -12.0000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 6 q^{9}+O(q^{10})$$ 2 * q + 6 * q^9 $$2 q + 6 q^{9} - 8 q^{11} - 2 q^{19} + 12 q^{29} - 16 q^{31} + 12 q^{41} + 6 q^{49} + 24 q^{59} + 12 q^{61} + 16 q^{79} + 18 q^{81} - 28 q^{89} + 16 q^{91} - 24 q^{99}+O(q^{100})$$ 2 * q + 6 * q^9 - 8 * q^11 - 2 * q^19 + 12 * q^29 - 16 * q^31 + 12 * q^41 + 6 * q^49 + 24 * q^59 + 12 * q^61 + 16 * q^79 + 18 * q^81 - 28 * q^89 + 16 * q^91 - 24 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times$$.

 $$n$$ $$77$$ $$401$$ $$951$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 2.00000i 0.755929i 0.925820 + 0.377964i $$0.123376\pi$$
−0.925820 + 0.377964i $$0.876624\pi$$
$$8$$ 0 0
$$9$$ 3.00000 1.00000
$$10$$ 0 0
$$11$$ −4.00000 −1.20605 −0.603023 0.797724i $$-0.706037\pi$$
−0.603023 + 0.797724i $$0.706037\pi$$
$$12$$ 0 0
$$13$$ − 4.00000i − 1.10940i −0.832050 0.554700i $$-0.812833\pi$$
0.832050 0.554700i $$-0.187167\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ − 6.00000i − 1.45521i −0.685994 0.727607i $$-0.740633\pi$$
0.685994 0.727607i $$-0.259367\pi$$
$$18$$ 0 0
$$19$$ −1.00000 −0.229416
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ − 2.00000i − 0.417029i −0.978019 0.208514i $$-0.933137\pi$$
0.978019 0.208514i $$-0.0668628\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 6.00000 1.11417 0.557086 0.830455i $$-0.311919\pi$$
0.557086 + 0.830455i $$0.311919\pi$$
$$30$$ 0 0
$$31$$ −8.00000 −1.43684 −0.718421 0.695608i $$-0.755135\pi$$
−0.718421 + 0.695608i $$0.755135\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ − 4.00000i − 0.657596i −0.944400 0.328798i $$-0.893356\pi$$
0.944400 0.328798i $$-0.106644\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 6.00000 0.937043 0.468521 0.883452i $$-0.344787\pi$$
0.468521 + 0.883452i $$0.344787\pi$$
$$42$$ 0 0
$$43$$ − 6.00000i − 0.914991i −0.889212 0.457496i $$-0.848747\pi$$
0.889212 0.457496i $$-0.151253\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ − 6.00000i − 0.875190i −0.899172 0.437595i $$-0.855830\pi$$
0.899172 0.437595i $$-0.144170\pi$$
$$48$$ 0 0
$$49$$ 3.00000 0.428571
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 8.00000i 1.09888i 0.835532 + 0.549442i $$0.185160\pi$$
−0.835532 + 0.549442i $$0.814840\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 12.0000 1.56227 0.781133 0.624364i $$-0.214642\pi$$
0.781133 + 0.624364i $$0.214642\pi$$
$$60$$ 0 0
$$61$$ 6.00000 0.768221 0.384111 0.923287i $$-0.374508\pi$$
0.384111 + 0.923287i $$0.374508\pi$$
$$62$$ 0 0
$$63$$ 6.00000i 0.755929i
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ − 10.0000i − 1.17041i −0.810885 0.585206i $$-0.801014\pi$$
0.810885 0.585206i $$-0.198986\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ − 8.00000i − 0.911685i
$$78$$ 0 0
$$79$$ 8.00000 0.900070 0.450035 0.893011i $$-0.351411\pi$$
0.450035 + 0.893011i $$0.351411\pi$$
$$80$$ 0 0
$$81$$ 9.00000 1.00000
$$82$$ 0 0
$$83$$ 14.0000i 1.53670i 0.640030 + 0.768350i $$0.278922\pi$$
−0.640030 + 0.768350i $$0.721078\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −14.0000 −1.48400 −0.741999 0.670402i $$-0.766122\pi$$
−0.741999 + 0.670402i $$0.766122\pi$$
$$90$$ 0 0
$$91$$ 8.00000 0.838628
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ − 16.0000i − 1.62455i −0.583272 0.812277i $$-0.698228\pi$$
0.583272 0.812277i $$-0.301772\pi$$
$$98$$ 0 0
$$99$$ −12.0000 −1.20605
$$100$$ 0 0
$$101$$ −14.0000 −1.39305 −0.696526 0.717532i $$-0.745272\pi$$
−0.696526 + 0.717532i $$0.745272\pi$$
$$102$$ 0 0
$$103$$ − 20.0000i − 1.97066i −0.170664 0.985329i $$-0.554591\pi$$
0.170664 0.985329i $$-0.445409\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 4.00000i 0.386695i 0.981130 + 0.193347i $$0.0619344\pi$$
−0.981130 + 0.193347i $$0.938066\pi$$
$$108$$ 0 0
$$109$$ 2.00000 0.191565 0.0957826 0.995402i $$-0.469465\pi$$
0.0957826 + 0.995402i $$0.469465\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ − 12.0000i − 1.10940i
$$118$$ 0 0
$$119$$ 12.0000 1.10004
$$120$$ 0 0
$$121$$ 5.00000 0.454545
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ − 12.0000i − 1.06483i −0.846484 0.532414i $$-0.821285\pi$$
0.846484 0.532414i $$-0.178715\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −8.00000 −0.698963 −0.349482 0.936943i $$-0.613642\pi$$
−0.349482 + 0.936943i $$0.613642\pi$$
$$132$$ 0 0
$$133$$ − 2.00000i − 0.173422i
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ − 6.00000i − 0.512615i −0.966595 0.256307i $$-0.917494\pi$$
0.966595 0.256307i $$-0.0825059\pi$$
$$138$$ 0 0
$$139$$ 8.00000 0.678551 0.339276 0.940687i $$-0.389818\pi$$
0.339276 + 0.940687i $$0.389818\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 16.0000i 1.33799i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 10.0000 0.819232 0.409616 0.912258i $$-0.365663\pi$$
0.409616 + 0.912258i $$0.365663\pi$$
$$150$$ 0 0
$$151$$ −16.0000 −1.30206 −0.651031 0.759051i $$-0.725663\pi$$
−0.651031 + 0.759051i $$0.725663\pi$$
$$152$$ 0 0
$$153$$ − 18.0000i − 1.45521i
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 18.0000i 1.43656i 0.695756 + 0.718278i $$0.255069\pi$$
−0.695756 + 0.718278i $$0.744931\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 4.00000 0.315244
$$162$$ 0 0
$$163$$ − 14.0000i − 1.09656i −0.836293 0.548282i $$-0.815282\pi$$
0.836293 0.548282i $$-0.184718\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ − 16.0000i − 1.23812i −0.785345 0.619059i $$-0.787514\pi$$
0.785345 0.619059i $$-0.212486\pi$$
$$168$$ 0 0
$$169$$ −3.00000 −0.230769
$$170$$ 0 0
$$171$$ −3.00000 −0.229416
$$172$$ 0 0
$$173$$ − 8.00000i − 0.608229i −0.952636 0.304114i $$-0.901639\pi$$
0.952636 0.304114i $$-0.0983605\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ −4.00000 −0.298974 −0.149487 0.988764i $$-0.547762\pi$$
−0.149487 + 0.988764i $$0.547762\pi$$
$$180$$ 0 0
$$181$$ −10.0000 −0.743294 −0.371647 0.928374i $$-0.621207\pi$$
−0.371647 + 0.928374i $$0.621207\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 24.0000i 1.75505i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 12.0000 0.868290 0.434145 0.900843i $$-0.357051\pi$$
0.434145 + 0.900843i $$0.357051\pi$$
$$192$$ 0 0
$$193$$ 16.0000i 1.15171i 0.817554 + 0.575853i $$0.195330\pi$$
−0.817554 + 0.575853i $$0.804670\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 22.0000i 1.56744i 0.621117 + 0.783718i $$0.286679\pi$$
−0.621117 + 0.783718i $$0.713321\pi$$
$$198$$ 0 0
$$199$$ 24.0000 1.70131 0.850657 0.525720i $$-0.176204\pi$$
0.850657 + 0.525720i $$0.176204\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 12.0000i 0.842235i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ − 6.00000i − 0.417029i
$$208$$ 0 0
$$209$$ 4.00000 0.276686
$$210$$ 0 0
$$211$$ 4.00000 0.275371 0.137686 0.990476i $$-0.456034\pi$$
0.137686 + 0.990476i $$0.456034\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ − 16.0000i − 1.08615i
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −24.0000 −1.61441
$$222$$ 0 0
$$223$$ 4.00000i 0.267860i 0.990991 + 0.133930i $$0.0427597\pi$$
−0.990991 + 0.133930i $$0.957240\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 4.00000i 0.265489i 0.991150 + 0.132745i $$0.0423790\pi$$
−0.991150 + 0.132745i $$0.957621\pi$$
$$228$$ 0 0
$$229$$ 6.00000 0.396491 0.198246 0.980152i $$-0.436476\pi$$
0.198246 + 0.980152i $$0.436476\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ − 14.0000i − 0.917170i −0.888650 0.458585i $$-0.848356\pi$$
0.888650 0.458585i $$-0.151644\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ −16.0000 −1.03495 −0.517477 0.855697i $$-0.673129\pi$$
−0.517477 + 0.855697i $$0.673129\pi$$
$$240$$ 0 0
$$241$$ 6.00000 0.386494 0.193247 0.981150i $$-0.438098\pi$$
0.193247 + 0.981150i $$0.438098\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 4.00000i 0.254514i
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$252$$ 0 0
$$253$$ 8.00000i 0.502956i
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 20.0000i 1.24757i 0.781598 + 0.623783i $$0.214405\pi$$
−0.781598 + 0.623783i $$0.785595\pi$$
$$258$$ 0 0
$$259$$ 8.00000 0.497096
$$260$$ 0 0
$$261$$ 18.0000 1.11417
$$262$$ 0 0
$$263$$ 14.0000i 0.863277i 0.902047 + 0.431638i $$0.142064\pi$$
−0.902047 + 0.431638i $$0.857936\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −14.0000 −0.853595 −0.426798 0.904347i $$-0.640358\pi$$
−0.426798 + 0.904347i $$0.640358\pi$$
$$270$$ 0 0
$$271$$ −24.0000 −1.45790 −0.728948 0.684569i $$-0.759990\pi$$
−0.728948 + 0.684569i $$0.759990\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 26.0000i 1.56219i 0.624413 + 0.781094i $$0.285338\pi$$
−0.624413 + 0.781094i $$0.714662\pi$$
$$278$$ 0 0
$$279$$ −24.0000 −1.43684
$$280$$ 0 0
$$281$$ 30.0000 1.78965 0.894825 0.446417i $$-0.147300\pi$$
0.894825 + 0.446417i $$0.147300\pi$$
$$282$$ 0 0
$$283$$ 22.0000i 1.30776i 0.756596 + 0.653882i $$0.226861\pi$$
−0.756596 + 0.653882i $$0.773139\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 12.0000i 0.708338i
$$288$$ 0 0
$$289$$ −19.0000 −1.11765
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ − 24.0000i − 1.40209i −0.713115 0.701047i $$-0.752716\pi$$
0.713115 0.701047i $$-0.247284\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −8.00000 −0.462652
$$300$$ 0 0
$$301$$ 12.0000 0.691669
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ − 4.00000i − 0.228292i −0.993464 0.114146i $$-0.963587\pi$$
0.993464 0.114146i $$-0.0364132\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −8.00000 −0.453638 −0.226819 0.973937i $$-0.572833\pi$$
−0.226819 + 0.973937i $$0.572833\pi$$
$$312$$ 0 0
$$313$$ − 22.0000i − 1.24351i −0.783210 0.621757i $$-0.786419\pi$$
0.783210 0.621757i $$-0.213581\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 12.0000i 0.673987i 0.941507 + 0.336994i $$0.109410\pi$$
−0.941507 + 0.336994i $$0.890590\pi$$
$$318$$ 0 0
$$319$$ −24.0000 −1.34374
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 6.00000i 0.333849i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 12.0000 0.661581
$$330$$ 0 0
$$331$$ 20.0000 1.09930 0.549650 0.835395i $$-0.314761\pi$$
0.549650 + 0.835395i $$0.314761\pi$$
$$332$$ 0 0
$$333$$ − 12.0000i − 0.657596i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ − 24.0000i − 1.30736i −0.756770 0.653682i $$-0.773224\pi$$
0.756770 0.653682i $$-0.226776\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 32.0000 1.73290
$$342$$ 0 0
$$343$$ 20.0000i 1.07990i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 6.00000i 0.322097i 0.986947 + 0.161048i $$0.0514875\pi$$
−0.986947 + 0.161048i $$0.948512\pi$$
$$348$$ 0 0
$$349$$ −14.0000 −0.749403 −0.374701 0.927146i $$-0.622255\pi$$
−0.374701 + 0.927146i $$0.622255\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ − 2.00000i − 0.106449i −0.998583 0.0532246i $$-0.983050\pi$$
0.998583 0.0532246i $$-0.0169499\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −4.00000 −0.211112 −0.105556 0.994413i $$-0.533662\pi$$
−0.105556 + 0.994413i $$0.533662\pi$$
$$360$$ 0 0
$$361$$ 1.00000 0.0526316
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 10.0000i 0.521996i 0.965339 + 0.260998i $$0.0840516\pi$$
−0.965339 + 0.260998i $$0.915948\pi$$
$$368$$ 0 0
$$369$$ 18.0000 0.937043
$$370$$ 0 0
$$371$$ −16.0000 −0.830679
$$372$$ 0 0
$$373$$ − 8.00000i − 0.414224i −0.978317 0.207112i $$-0.933593\pi$$
0.978317 0.207112i $$-0.0664065\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ − 24.0000i − 1.23606i
$$378$$ 0 0
$$379$$ −12.0000 −0.616399 −0.308199 0.951322i $$-0.599726\pi$$
−0.308199 + 0.951322i $$0.599726\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 32.0000i 1.63512i 0.575841 + 0.817562i $$0.304675\pi$$
−0.575841 + 0.817562i $$0.695325\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ − 18.0000i − 0.914991i
$$388$$ 0 0
$$389$$ −26.0000 −1.31825 −0.659126 0.752032i $$-0.729074\pi$$
−0.659126 + 0.752032i $$0.729074\pi$$
$$390$$ 0 0
$$391$$ −12.0000 −0.606866
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 10.0000i 0.501886i 0.968002 + 0.250943i $$0.0807406\pi$$
−0.968002 + 0.250943i $$0.919259\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −30.0000 −1.49813 −0.749064 0.662497i $$-0.769497\pi$$
−0.749064 + 0.662497i $$0.769497\pi$$
$$402$$ 0 0
$$403$$ 32.0000i 1.59403i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 16.0000i 0.793091i
$$408$$ 0 0
$$409$$ −10.0000 −0.494468 −0.247234 0.968956i $$-0.579522\pi$$
−0.247234 + 0.968956i $$0.579522\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 24.0000i 1.18096i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 4.00000 0.195413 0.0977064 0.995215i $$-0.468849\pi$$
0.0977064 + 0.995215i $$0.468849\pi$$
$$420$$ 0 0
$$421$$ 10.0000 0.487370 0.243685 0.969854i $$-0.421644\pi$$
0.243685 + 0.969854i $$0.421644\pi$$
$$422$$ 0 0
$$423$$ − 18.0000i − 0.875190i
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 12.0000i 0.580721i
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 24.0000 1.15604 0.578020 0.816023i $$-0.303826\pi$$
0.578020 + 0.816023i $$0.303826\pi$$
$$432$$ 0 0
$$433$$ − 16.0000i − 0.768911i −0.923144 0.384455i $$-0.874389\pi$$
0.923144 0.384455i $$-0.125611\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 2.00000i 0.0956730i
$$438$$ 0 0
$$439$$ −8.00000 −0.381819 −0.190910 0.981608i $$-0.561144\pi$$
−0.190910 + 0.981608i $$0.561144\pi$$
$$440$$ 0 0
$$441$$ 9.00000 0.428571
$$442$$ 0 0
$$443$$ 30.0000i 1.42534i 0.701498 + 0.712672i $$0.252515\pi$$
−0.701498 + 0.712672i $$0.747485\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −2.00000 −0.0943858 −0.0471929 0.998886i $$-0.515028\pi$$
−0.0471929 + 0.998886i $$0.515028\pi$$
$$450$$ 0 0
$$451$$ −24.0000 −1.13012
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ − 10.0000i − 0.467780i −0.972263 0.233890i $$-0.924854\pi$$
0.972263 0.233890i $$-0.0751456\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −18.0000 −0.838344 −0.419172 0.907907i $$-0.637680\pi$$
−0.419172 + 0.907907i $$0.637680\pi$$
$$462$$ 0 0
$$463$$ 22.0000i 1.02243i 0.859454 + 0.511213i $$0.170804\pi$$
−0.859454 + 0.511213i $$0.829196\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 14.0000i 0.647843i 0.946084 + 0.323921i $$0.105001\pi$$
−0.946084 + 0.323921i $$0.894999\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 24.0000i 1.10352i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 24.0000i 1.09888i
$$478$$ 0 0
$$479$$ 12.0000 0.548294 0.274147 0.961688i $$-0.411605\pi$$
0.274147 + 0.961688i $$0.411605\pi$$
$$480$$ 0 0
$$481$$ −16.0000 −0.729537
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 32.0000i 1.45006i 0.688718 + 0.725029i $$0.258174\pi$$
−0.688718 + 0.725029i $$0.741826\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −24.0000 −1.08310 −0.541552 0.840667i $$-0.682163\pi$$
−0.541552 + 0.840667i $$0.682163\pi$$
$$492$$ 0 0
$$493$$ − 36.0000i − 1.62136i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −24.0000 −1.07439 −0.537194 0.843459i $$-0.680516\pi$$
−0.537194 + 0.843459i $$0.680516\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 6.00000i 0.267527i 0.991013 + 0.133763i $$0.0427062\pi$$
−0.991013 + 0.133763i $$0.957294\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −26.0000 −1.15243 −0.576215 0.817298i $$-0.695471\pi$$
−0.576215 + 0.817298i $$0.695471\pi$$
$$510$$ 0 0
$$511$$ 20.0000 0.884748
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 24.0000i 1.05552i
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −30.0000 −1.31432 −0.657162 0.753749i $$-0.728243\pi$$
−0.657162 + 0.753749i $$0.728243\pi$$
$$522$$ 0 0
$$523$$ − 36.0000i − 1.57417i −0.616844 0.787085i $$-0.711589\pi$$
0.616844 0.787085i $$-0.288411\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 48.0000i 2.09091i
$$528$$ 0 0
$$529$$ 19.0000 0.826087
$$530$$ 0 0
$$531$$ 36.0000 1.56227
$$532$$ 0 0
$$533$$ − 24.0000i − 1.03956i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −12.0000 −0.516877
$$540$$ 0 0
$$541$$ 34.0000 1.46177 0.730887 0.682498i $$-0.239107\pi$$
0.730887 + 0.682498i $$0.239107\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ − 20.0000i − 0.855138i −0.903983 0.427569i $$-0.859370\pi$$
0.903983 0.427569i $$-0.140630\pi$$
$$548$$ 0 0
$$549$$ 18.0000 0.768221
$$550$$ 0 0
$$551$$ −6.00000 −0.255609
$$552$$ 0 0
$$553$$ 16.0000i 0.680389i
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 18.0000i 0.762684i 0.924434 + 0.381342i $$0.124538\pi$$
−0.924434 + 0.381342i $$0.875462\pi$$
$$558$$ 0 0
$$559$$ −24.0000 −1.01509
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ − 4.00000i − 0.168580i −0.996441 0.0842900i $$-0.973138\pi$$
0.996441 0.0842900i $$-0.0268622\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 18.0000i 0.755929i
$$568$$ 0 0
$$569$$ 30.0000 1.25767 0.628833 0.777541i $$-0.283533\pi$$
0.628833 + 0.777541i $$0.283533\pi$$
$$570$$ 0 0
$$571$$ 36.0000 1.50655 0.753277 0.657704i $$-0.228472\pi$$
0.753277 + 0.657704i $$0.228472\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ − 2.00000i − 0.0832611i −0.999133 0.0416305i $$-0.986745\pi$$
0.999133 0.0416305i $$-0.0132552\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −28.0000 −1.16164
$$582$$ 0 0
$$583$$ − 32.0000i − 1.32530i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 6.00000i 0.247647i 0.992304 + 0.123823i $$0.0395156\pi$$
−0.992304 + 0.123823i $$0.960484\pi$$
$$588$$ 0 0
$$589$$ 8.00000 0.329634
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 42.0000i 1.72473i 0.506284 + 0.862367i $$0.331019\pi$$
−0.506284 + 0.862367i $$0.668981\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −16.0000 −0.653742 −0.326871 0.945069i $$-0.605994\pi$$
−0.326871 + 0.945069i $$0.605994\pi$$
$$600$$ 0 0
$$601$$ 30.0000 1.22373 0.611863 0.790964i $$-0.290420\pi$$
0.611863 + 0.790964i $$0.290420\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ − 16.0000i − 0.649420i −0.945814 0.324710i $$-0.894733\pi$$
0.945814 0.324710i $$-0.105267\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −24.0000 −0.970936
$$612$$ 0 0
$$613$$ − 2.00000i − 0.0807792i −0.999184 0.0403896i $$-0.987140\pi$$
0.999184 0.0403896i $$-0.0128599\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 10.0000i 0.402585i 0.979531 + 0.201292i $$0.0645141\pi$$
−0.979531 + 0.201292i $$0.935486\pi$$
$$618$$ 0 0
$$619$$ 48.0000 1.92928 0.964641 0.263566i $$-0.0848986\pi$$
0.964641 + 0.263566i $$0.0848986\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ − 28.0000i − 1.12180i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −24.0000 −0.956943
$$630$$ 0 0
$$631$$ −40.0000 −1.59237 −0.796187 0.605050i $$-0.793153\pi$$
−0.796187 + 0.605050i $$0.793153\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ − 12.0000i − 0.475457i
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 14.0000 0.552967 0.276483 0.961019i $$-0.410831\pi$$
0.276483 + 0.961019i $$0.410831\pi$$
$$642$$ 0 0
$$643$$ − 34.0000i − 1.34083i −0.741987 0.670415i $$-0.766116\pi$$
0.741987 0.670415i $$-0.233884\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 6.00000i 0.235884i 0.993020 + 0.117942i $$0.0376297\pi$$
−0.993020 + 0.117942i $$0.962370\pi$$
$$648$$ 0 0
$$649$$ −48.0000 −1.88416
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ − 10.0000i − 0.391330i −0.980671 0.195665i $$-0.937313\pi$$
0.980671 0.195665i $$-0.0626866\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ − 30.0000i − 1.17041i
$$658$$ 0 0
$$659$$ 36.0000 1.40236 0.701180 0.712984i $$-0.252657\pi$$
0.701180 + 0.712984i $$0.252657\pi$$
$$660$$ 0 0
$$661$$ 42.0000 1.63361 0.816805 0.576913i $$-0.195743\pi$$
0.816805 + 0.576913i $$0.195743\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ − 12.0000i − 0.464642i
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −24.0000 −0.926510
$$672$$ 0 0
$$673$$ 28.0000i 1.07932i 0.841883 + 0.539660i $$0.181447\pi$$
−0.841883 + 0.539660i $$0.818553\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$678$$ 0 0
$$679$$ 32.0000 1.22805
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ − 44.0000i − 1.68361i −0.539779 0.841807i $$-0.681492\pi$$
0.539779 0.841807i $$-0.318508\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 32.0000 1.21910
$$690$$ 0 0
$$691$$ −36.0000 −1.36950 −0.684752 0.728776i $$-0.740090\pi$$
−0.684752 + 0.728776i $$0.740090\pi$$
$$692$$ 0 0
$$693$$ − 24.0000i − 0.911685i
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ − 36.0000i − 1.36360i
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −18.0000 −0.679851 −0.339925 0.940452i $$-0.610402\pi$$
−0.339925 + 0.940452i $$0.610402\pi$$
$$702$$ 0 0
$$703$$ 4.00000i 0.150863i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ − 28.0000i − 1.05305i
$$708$$ 0 0
$$709$$ 10.0000 0.375558 0.187779 0.982211i $$-0.439871\pi$$
0.187779 + 0.982211i $$0.439871\pi$$
$$710$$ 0 0
$$711$$ 24.0000 0.900070
$$712$$ 0 0
$$713$$ 16.0000i 0.599205i
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 12.0000 0.447524 0.223762 0.974644i $$-0.428166\pi$$
0.223762 + 0.974644i $$0.428166\pi$$
$$720$$ 0 0
$$721$$ 40.0000 1.48968
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ − 14.0000i − 0.519231i −0.965712 0.259616i $$-0.916404\pi$$
0.965712 0.259616i $$-0.0835959\pi$$
$$728$$ 0 0
$$729$$ 27.0000 1.00000
$$730$$ 0 0
$$731$$ −36.0000 −1.33151
$$732$$ 0 0
$$733$$ 42.0000i 1.55131i 0.631160 + 0.775653i $$0.282579\pi$$
−0.631160 + 0.775653i $$0.717421\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ −44.0000 −1.61857 −0.809283 0.587419i $$-0.800144\pi$$
−0.809283 + 0.587419i $$0.800144\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 24.0000i 0.880475i 0.897881 + 0.440237i $$0.145106\pi$$
−0.897881 + 0.440237i $$0.854894\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 42.0000i 1.53670i
$$748$$ 0 0
$$749$$ −8.00000 −0.292314
$$750$$ 0 0
$$751$$ 40.0000 1.45962 0.729810 0.683650i $$-0.239608\pi$$
0.729810 + 0.683650i $$0.239608\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ − 42.0000i − 1.52652i −0.646094 0.763258i $$-0.723599\pi$$
0.646094 0.763258i $$-0.276401\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −10.0000 −0.362500 −0.181250 0.983437i $$-0.558014\pi$$
−0.181250 + 0.983437i $$0.558014\pi$$
$$762$$ 0 0
$$763$$ 4.00000i 0.144810i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ − 48.0000i − 1.73318i
$$768$$ 0 0
$$769$$ 2.00000 0.0721218 0.0360609 0.999350i $$-0.488519\pi$$
0.0360609 + 0.999350i $$0.488519\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 36.0000i 1.29483i 0.762138 + 0.647415i $$0.224150\pi$$
−0.762138 + 0.647415i $$0.775850\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −6.00000 −0.214972
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ − 12.0000i − 0.427754i −0.976861 0.213877i $$-0.931391\pi$$
0.976861 0.213877i $$-0.0686091\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ − 24.0000i − 0.852265i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ − 16.0000i − 0.566749i −0.959009 0.283375i $$-0.908546\pi$$
0.959009 0.283375i $$-0.0914540\pi$$
$$798$$ 0 0
$$799$$ −36.0000 −1.27359
$$800$$ 0 0
$$801$$ −42.0000 −1.48400
$$802$$ 0 0
$$803$$ 40.0000i 1.41157i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −10.0000 −0.351581 −0.175791 0.984428i $$-0.556248\pi$$
−0.175791 + 0.984428i $$0.556248\pi$$
$$810$$ 0 0
$$811$$ 28.0000 0.983213 0.491606 0.870817i $$-0.336410\pi$$
0.491606 + 0.870817i $$0.336410\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 6.00000i 0.209913i
$$818$$ 0 0
$$819$$ 24.0000 0.838628
$$820$$ 0 0
$$821$$ −22.0000 −0.767805 −0.383903 0.923374i $$-0.625420\pi$$
−0.383903 + 0.923374i $$0.625420\pi$$
$$822$$ 0 0
$$823$$ 50.0000i 1.74289i 0.490493 + 0.871445i $$0.336817\pi$$
−0.490493 + 0.871445i $$0.663183\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ − 24.0000i − 0.834562i −0.908778 0.417281i $$-0.862983\pi$$
0.908778 0.417281i $$-0.137017\pi$$
$$828$$ 0 0
$$829$$ −14.0000 −0.486240 −0.243120 0.969996i $$-0.578171\pi$$
−0.243120 + 0.969996i $$0.578171\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ − 18.0000i − 0.623663i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 40.0000 1.38095 0.690477 0.723355i $$-0.257401\pi$$
0.690477 + 0.723355i $$0.257401\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 10.0000i 0.343604i
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ −8.00000 −0.274236
$$852$$ 0 0
$$853$$ 18.0000i 0.616308i 0.951336 + 0.308154i $$0.0997113\pi$$
−0.951336 + 0.308154i $$0.900289\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 52.0000i 1.77629i 0.459567 + 0.888143i $$0.348005\pi$$
−0.459567 + 0.888143i $$0.651995\pi$$
$$858$$ 0 0
$$859$$ 28.0000 0.955348 0.477674 0.878537i $$-0.341480\pi$$
0.477674 + 0.878537i $$0.341480\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ − 40.0000i − 1.36162i −0.732462 0.680808i $$-0.761629\pi$$
0.732462 0.680808i $$-0.238371\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ −32.0000 −1.08553
$$870$$ 0 0
$$871$$ 0 0
$$872$$ 0 0
$$873$$ − 48.0000i − 1.62455i
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 24.0000i 0.810422i 0.914223 + 0.405211i $$0.132802\pi$$
−0.914223 + 0.405211i $$0.867198\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 10.0000 0.336909 0.168454 0.985709i $$-0.446122\pi$$
0.168454 + 0.985709i $$0.446122\pi$$
$$882$$ 0 0
$$883$$ − 6.00000i − 0.201916i −0.994891 0.100958i $$-0.967809\pi$$
0.994891 0.100958i $$-0.0321908\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 4.00000i 0.134307i 0.997743 + 0.0671534i $$0.0213917\pi$$
−0.997743 + 0.0671534i $$0.978608\pi$$
$$888$$ 0 0
$$889$$ 24.0000 0.804934
$$890$$ 0 0
$$891$$ −36.0000 −1.20605
$$892$$ 0 0
$$893$$ 6.00000i 0.200782i
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ −48.0000 −1.60089
$$900$$ 0 0
$$901$$ 48.0000 1.59911
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ − 44.0000i − 1.46100i −0.682915 0.730498i $$-0.739288\pi$$
0.682915 0.730498i $$-0.260712\pi$$
$$908$$ 0 0
$$909$$ −42.0000 −1.39305
$$910$$ 0 0
$$911$$ 24.0000 0.795155 0.397578 0.917568i $$-0.369851\pi$$
0.397578 + 0.917568i $$0.369851\pi$$
$$912$$ 0 0
$$913$$ − 56.0000i − 1.85333i
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ − 16.0000i − 0.528367i
$$918$$ 0 0
$$919$$ 32.0000 1.05558 0.527791 0.849374i $$-0.323020\pi$$
0.527791 + 0.849374i $$0.323020\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ − 60.0000i − 1.97066i
$$928$$ 0 0
$$929$$ 42.0000 1.37798 0.688988 0.724773i $$-0.258055\pi$$
0.688988 + 0.724773i $$0.258055\pi$$
$$930$$ 0 0
$$931$$ −3.00000 −0.0983210
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ − 38.0000i − 1.24141i −0.784046 0.620703i $$-0.786847\pi$$
0.784046 0.620703i $$-0.213153\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ −18.0000 −0.586783 −0.293392 0.955992i $$-0.594784\pi$$
−0.293392 + 0.955992i $$0.594784\pi$$
$$942$$ 0 0
$$943$$ − 12.0000i − 0.390774i
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ − 18.0000i − 0.584921i −0.956278 0.292461i $$-0.905526\pi$$
0.956278 0.292461i $$-0.0944741\pi$$
$$948$$ 0 0
$$949$$ −40.0000 −1.29845
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 60.0000i 1.94359i 0.235826 + 0.971795i $$0.424220\pi$$
−0.235826 + 0.971795i $$0.575780\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 12.0000 0.387500
$$960$$ 0 0
$$961$$ 33.0000 1.06452
$$962$$ 0 0
$$963$$ 12.0000i 0.386695i
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 14.0000i 0.450210i 0.974335 + 0.225105i $$0.0722725\pi$$
−0.974335 + 0.225105i $$0.927728\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 4.00000 0.128366 0.0641831 0.997938i $$-0.479556\pi$$
0.0641831 + 0.997938i $$0.479556\pi$$
$$972$$ 0 0
$$973$$ 16.0000i 0.512936i
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ − 4.00000i − 0.127971i −0.997951 0.0639857i $$-0.979619\pi$$
0.997951 0.0639857i $$-0.0203812\pi$$
$$978$$ 0 0
$$979$$ 56.0000 1.78977
$$980$$ 0 0
$$981$$ 6.00000 0.191565
$$982$$ 0 0
$$983$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −12.0000 −0.381578
$$990$$ 0 0
$$991$$ −48.0000 −1.52477 −0.762385 0.647124i $$-0.775972\pi$$
−0.762385 + 0.647124i $$0.775972\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ − 22.0000i − 0.696747i −0.937356 0.348373i $$-0.886734\pi$$
0.937356 0.348373i $$-0.113266\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.2.c.c.1749.2 2
5.2 odd 4 380.2.a.a.1.1 1
5.3 odd 4 1900.2.a.c.1.1 1
5.4 even 2 inner 1900.2.c.c.1749.1 2
15.2 even 4 3420.2.a.d.1.1 1
20.3 even 4 7600.2.a.j.1.1 1
20.7 even 4 1520.2.a.e.1.1 1
40.27 even 4 6080.2.a.n.1.1 1
40.37 odd 4 6080.2.a.m.1.1 1
95.37 even 4 7220.2.a.d.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.a.a.1.1 1 5.2 odd 4
1520.2.a.e.1.1 1 20.7 even 4
1900.2.a.c.1.1 1 5.3 odd 4
1900.2.c.c.1749.1 2 5.4 even 2 inner
1900.2.c.c.1749.2 2 1.1 even 1 trivial
3420.2.a.d.1.1 1 15.2 even 4
6080.2.a.m.1.1 1 40.37 odd 4
6080.2.a.n.1.1 1 40.27 even 4
7220.2.a.d.1.1 1 95.37 even 4
7600.2.a.j.1.1 1 20.3 even 4