Properties

Label 1900.2.a.f
Level $1900$
Weight $2$
Character orbit 1900.a
Self dual yes
Analytic conductor $15.172$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1900.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(15.1715763840\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
Defining polynomial: \(x^{3} - x^{2} - 4 x + 3\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \beta_{1} ) q^{3} + ( -1 + \beta_{1} ) q^{7} + ( 1 - 2 \beta_{1} + \beta_{2} ) q^{9} +O(q^{10})\) \( q + ( -1 + \beta_{1} ) q^{3} + ( -1 + \beta_{1} ) q^{7} + ( 1 - 2 \beta_{1} + \beta_{2} ) q^{9} + ( -\beta_{1} - 2 \beta_{2} ) q^{11} + ( -\beta_{1} + \beta_{2} ) q^{13} + ( -1 + \beta_{1} ) q^{17} - q^{19} + ( 4 - 2 \beta_{1} + \beta_{2} ) q^{21} + ( -2 - 2 \beta_{1} - \beta_{2} ) q^{23} + ( -4 + \beta_{1} - 2 \beta_{2} ) q^{27} + ( -2 - \beta_{1} - 2 \beta_{2} ) q^{29} + ( 4 - \beta_{1} + 3 \beta_{2} ) q^{31} + ( -3 - \beta_{1} - \beta_{2} ) q^{33} + ( 2 - \beta_{1} + 4 \beta_{2} ) q^{37} + ( -3 + 2 \beta_{1} - \beta_{2} ) q^{39} + ( 5 - 2 \beta_{1} + \beta_{2} ) q^{41} + ( -3 - 2 \beta_{1} ) q^{43} + ( -6 - \beta_{1} - 3 \beta_{2} ) q^{47} + ( -3 - 2 \beta_{1} + \beta_{2} ) q^{49} + ( 4 - 2 \beta_{1} + \beta_{2} ) q^{51} + ( -3 - 2 \beta_{1} ) q^{53} + ( 1 - \beta_{1} ) q^{57} + ( -4 + 6 \beta_{1} + 2 \beta_{2} ) q^{59} + ( 2 + \beta_{1} - 3 \beta_{2} ) q^{61} + ( -7 + 4 \beta_{1} - 2 \beta_{2} ) q^{63} + ( -2 + 3 \beta_{1} + 4 \beta_{2} ) q^{67} + ( -4 - \beta_{1} - 2 \beta_{2} ) q^{69} + ( -3 + 4 \beta_{1} - 2 \beta_{2} ) q^{71} + ( -3 + 3 \beta_{2} ) q^{73} + ( -3 - \beta_{1} - \beta_{2} ) q^{77} + ( -7 + 3 \beta_{1} - 4 \beta_{2} ) q^{79} + ( 4 - \beta_{1} - 2 \beta_{2} ) q^{81} + ( 1 - 6 \beta_{1} + 5 \beta_{2} ) q^{83} + ( -1 - 3 \beta_{1} - \beta_{2} ) q^{87} + ( 2 - 6 \beta_{1} + 3 \beta_{2} ) q^{89} + ( -3 + 2 \beta_{1} - \beta_{2} ) q^{91} + ( -7 + 8 \beta_{1} - \beta_{2} ) q^{93} + ( 3 \beta_{1} - 3 \beta_{2} ) q^{97} + 5 \beta_{2} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 2q^{3} - 2q^{7} + q^{9} + O(q^{10}) \) \( 3q - 2q^{3} - 2q^{7} + q^{9} - q^{11} - q^{13} - 2q^{17} - 3q^{19} + 10q^{21} - 8q^{23} - 11q^{27} - 7q^{29} + 11q^{31} - 10q^{33} + 5q^{37} - 7q^{39} + 13q^{41} - 11q^{43} - 19q^{47} - 11q^{49} + 10q^{51} - 11q^{53} + 2q^{57} - 6q^{59} + 7q^{61} - 17q^{63} - 3q^{67} - 13q^{69} - 5q^{71} - 9q^{73} - 10q^{77} - 18q^{79} + 11q^{81} - 3q^{83} - 6q^{87} - 7q^{91} - 13q^{93} + 3q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 4 x + 3\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 3\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.91223
0.713538
2.19869
0 −2.91223 0 0 0 −2.91223 0 5.48108 0
1.2 0 −0.286462 0 0 0 −0.286462 0 −2.91794 0
1.3 0 1.19869 0 0 0 1.19869 0 −1.56314 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1900.2.a.f 3
4.b odd 2 1 7600.2.a.by 3
5.b even 2 1 1900.2.a.h yes 3
5.c odd 4 2 1900.2.c.g 6
20.d odd 2 1 7600.2.a.bj 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1900.2.a.f 3 1.a even 1 1 trivial
1900.2.a.h yes 3 5.b even 2 1
1900.2.c.g 6 5.c odd 4 2
7600.2.a.bj 3 20.d odd 2 1
7600.2.a.by 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1900))\):

\( T_{3}^{3} + 2 T_{3}^{2} - 3 T_{3} - 1 \)
\( T_{7}^{3} + 2 T_{7}^{2} - 3 T_{7} - 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \)
$3$ \( -1 - 3 T + 2 T^{2} + T^{3} \)
$5$ \( T^{3} \)
$7$ \( -1 - 3 T + 2 T^{2} + T^{3} \)
$11$ \( 15 - 26 T + T^{2} + T^{3} \)
$13$ \( -3 - 8 T + T^{2} + T^{3} \)
$17$ \( -1 - 3 T + 2 T^{2} + T^{3} \)
$19$ \( ( 1 + T )^{3} \)
$23$ \( -9 - 3 T + 8 T^{2} + T^{3} \)
$29$ \( -25 - 10 T + 7 T^{2} + T^{3} \)
$31$ \( 241 - 6 T - 11 T^{2} + T^{3} \)
$37$ \( 405 - 72 T - 5 T^{2} + T^{3} \)
$41$ \( -25 + 36 T - 13 T^{2} + T^{3} \)
$43$ \( -27 + 23 T + 11 T^{2} + T^{3} \)
$47$ \( -63 + 68 T + 19 T^{2} + T^{3} \)
$53$ \( -27 + 23 T + 11 T^{2} + T^{3} \)
$59$ \( -856 - 176 T + 6 T^{2} + T^{3} \)
$61$ \( -25 - 30 T - 7 T^{2} + T^{3} \)
$67$ \( -599 - 128 T + 3 T^{2} + T^{3} \)
$71$ \( 123 - 73 T + 5 T^{2} + T^{3} \)
$73$ \( -27 - 18 T + 9 T^{2} + T^{3} \)
$79$ \( -607 + T + 18 T^{2} + T^{3} \)
$83$ \( -749 - 248 T + 3 T^{2} + T^{3} \)
$89$ \( -857 - 183 T + T^{3} \)
$97$ \( 81 - 72 T - 3 T^{2} + T^{3} \)
show more
show less