Properties

Label 1900.2.a.d
Level $1900$
Weight $2$
Character orbit 1900.a
Self dual yes
Analytic conductor $15.172$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1900.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(15.1715763840\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Defining polynomial: \(x^{2} - 3\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 380)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \beta ) q^{3} -2 q^{7} + ( 1 - 2 \beta ) q^{9} +O(q^{10})\) \( q + ( -1 + \beta ) q^{3} -2 q^{7} + ( 1 - 2 \beta ) q^{9} + 2 \beta q^{11} + ( 1 - \beta ) q^{13} -2 \beta q^{17} + q^{19} + ( 2 - 2 \beta ) q^{21} -2 \beta q^{23} -4 q^{27} -2 \beta q^{29} + ( 2 + 2 \beta ) q^{31} + ( 6 - 2 \beta ) q^{33} + ( -5 + \beta ) q^{37} + ( -4 + 2 \beta ) q^{39} -6 q^{41} + ( -2 - 4 \beta ) q^{43} + ( -6 + 4 \beta ) q^{47} -3 q^{49} + ( -6 + 2 \beta ) q^{51} + ( 9 - \beta ) q^{53} + ( -1 + \beta ) q^{57} -4 \beta q^{59} + ( 2 - 6 \beta ) q^{61} + ( -2 + 4 \beta ) q^{63} + ( -5 + \beta ) q^{67} + ( -6 + 2 \beta ) q^{69} + ( -6 - 2 \beta ) q^{71} + ( 4 + 2 \beta ) q^{73} -4 \beta q^{77} + ( -4 - 4 \beta ) q^{79} + ( 1 + 2 \beta ) q^{81} + 2 \beta q^{83} + ( -6 + 2 \beta ) q^{87} + ( -12 + 2 \beta ) q^{89} + ( -2 + 2 \beta ) q^{91} + 4 q^{93} + ( 1 - 9 \beta ) q^{97} + ( -12 + 2 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} - 4q^{7} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{3} - 4q^{7} + 2q^{9} + 2q^{13} + 2q^{19} + 4q^{21} - 8q^{27} + 4q^{31} + 12q^{33} - 10q^{37} - 8q^{39} - 12q^{41} - 4q^{43} - 12q^{47} - 6q^{49} - 12q^{51} + 18q^{53} - 2q^{57} + 4q^{61} - 4q^{63} - 10q^{67} - 12q^{69} - 12q^{71} + 8q^{73} - 8q^{79} + 2q^{81} - 12q^{87} - 24q^{89} - 4q^{91} + 8q^{93} + 2q^{97} - 24q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 −2.73205 0 0 0 −2.00000 0 4.46410 0
1.2 0 0.732051 0 0 0 −2.00000 0 −2.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1900.2.a.d 2
4.b odd 2 1 7600.2.a.bf 2
5.b even 2 1 380.2.a.d 2
5.c odd 4 2 1900.2.c.e 4
15.d odd 2 1 3420.2.a.h 2
20.d odd 2 1 1520.2.a.l 2
40.e odd 2 1 6080.2.a.bj 2
40.f even 2 1 6080.2.a.z 2
95.d odd 2 1 7220.2.a.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
380.2.a.d 2 5.b even 2 1
1520.2.a.l 2 20.d odd 2 1
1900.2.a.d 2 1.a even 1 1 trivial
1900.2.c.e 4 5.c odd 4 2
3420.2.a.h 2 15.d odd 2 1
6080.2.a.z 2 40.f even 2 1
6080.2.a.bj 2 40.e odd 2 1
7220.2.a.h 2 95.d odd 2 1
7600.2.a.bf 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1900))\):

\( T_{3}^{2} + 2 T_{3} - 2 \)
\( T_{7} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( -2 + 2 T + T^{2} \)
$5$ \( T^{2} \)
$7$ \( ( 2 + T )^{2} \)
$11$ \( -12 + T^{2} \)
$13$ \( -2 - 2 T + T^{2} \)
$17$ \( -12 + T^{2} \)
$19$ \( ( -1 + T )^{2} \)
$23$ \( -12 + T^{2} \)
$29$ \( -12 + T^{2} \)
$31$ \( -8 - 4 T + T^{2} \)
$37$ \( 22 + 10 T + T^{2} \)
$41$ \( ( 6 + T )^{2} \)
$43$ \( -44 + 4 T + T^{2} \)
$47$ \( -12 + 12 T + T^{2} \)
$53$ \( 78 - 18 T + T^{2} \)
$59$ \( -48 + T^{2} \)
$61$ \( -104 - 4 T + T^{2} \)
$67$ \( 22 + 10 T + T^{2} \)
$71$ \( 24 + 12 T + T^{2} \)
$73$ \( 4 - 8 T + T^{2} \)
$79$ \( -32 + 8 T + T^{2} \)
$83$ \( -12 + T^{2} \)
$89$ \( 132 + 24 T + T^{2} \)
$97$ \( -242 - 2 T + T^{2} \)
show more
show less