Defining parameters
Level: | \( N \) | \(=\) | \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1900.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(600\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1900))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 318 | 29 | 289 |
Cusp forms | 283 | 29 | 254 |
Eisenstein series | 35 | 0 | 35 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(-\) | \(7\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(6\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(7\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(9\) |
Plus space | \(+\) | \(13\) | ||
Minus space | \(-\) | \(16\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1900))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1900))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1900)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(190))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(380))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(475))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(950))\)\(^{\oplus 2}\)