Properties

Label 190.2.b.a.39.1
Level $190$
Weight $2$
Character 190.39
Analytic conductor $1.517$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [190,2,Mod(39,190)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(190, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("190.39");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 190 = 2 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 190.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.51715763840\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 39.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 190.39
Dual form 190.2.b.a.39.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -2.41421i q^{3} -1.00000 q^{4} +(-0.707107 - 2.12132i) q^{5} -2.41421 q^{6} +1.58579i q^{7} +1.00000i q^{8} -2.82843 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} -2.41421i q^{3} -1.00000 q^{4} +(-0.707107 - 2.12132i) q^{5} -2.41421 q^{6} +1.58579i q^{7} +1.00000i q^{8} -2.82843 q^{9} +(-2.12132 + 0.707107i) q^{10} +1.41421 q^{11} +2.41421i q^{12} -0.171573i q^{13} +1.58579 q^{14} +(-5.12132 + 1.70711i) q^{15} +1.00000 q^{16} +1.00000i q^{17} +2.82843i q^{18} +1.00000 q^{19} +(0.707107 + 2.12132i) q^{20} +3.82843 q^{21} -1.41421i q^{22} -9.24264i q^{23} +2.41421 q^{24} +(-4.00000 + 3.00000i) q^{25} -0.171573 q^{26} -0.414214i q^{27} -1.58579i q^{28} +5.82843 q^{29} +(1.70711 + 5.12132i) q^{30} -2.24264 q^{31} -1.00000i q^{32} -3.41421i q^{33} +1.00000 q^{34} +(3.36396 - 1.12132i) q^{35} +2.82843 q^{36} +8.48528i q^{37} -1.00000i q^{38} -0.414214 q^{39} +(2.12132 - 0.707107i) q^{40} +4.24264 q^{41} -3.82843i q^{42} -10.2426i q^{43} -1.41421 q^{44} +(2.00000 + 6.00000i) q^{45} -9.24264 q^{46} -2.41421i q^{48} +4.48528 q^{49} +(3.00000 + 4.00000i) q^{50} +2.41421 q^{51} +0.171573i q^{52} +11.4853i q^{53} -0.414214 q^{54} +(-1.00000 - 3.00000i) q^{55} -1.58579 q^{56} -2.41421i q^{57} -5.82843i q^{58} +12.8995 q^{59} +(5.12132 - 1.70711i) q^{60} +5.75736 q^{61} +2.24264i q^{62} -4.48528i q^{63} -1.00000 q^{64} +(-0.363961 + 0.121320i) q^{65} -3.41421 q^{66} +13.2426i q^{67} -1.00000i q^{68} -22.3137 q^{69} +(-1.12132 - 3.36396i) q^{70} -10.5858 q^{71} -2.82843i q^{72} +5.48528i q^{73} +8.48528 q^{74} +(7.24264 + 9.65685i) q^{75} -1.00000 q^{76} +2.24264i q^{77} +0.414214i q^{78} -10.4853 q^{79} +(-0.707107 - 2.12132i) q^{80} -9.48528 q^{81} -4.24264i q^{82} +2.48528i q^{83} -3.82843 q^{84} +(2.12132 - 0.707107i) q^{85} -10.2426 q^{86} -14.0711i q^{87} +1.41421i q^{88} +7.07107 q^{89} +(6.00000 - 2.00000i) q^{90} +0.272078 q^{91} +9.24264i q^{92} +5.41421i q^{93} +(-0.707107 - 2.12132i) q^{95} -2.41421 q^{96} -11.6569i q^{97} -4.48528i q^{98} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} - 4 q^{6} + 12 q^{14} - 12 q^{15} + 4 q^{16} + 4 q^{19} + 4 q^{21} + 4 q^{24} - 16 q^{25} - 12 q^{26} + 12 q^{29} + 4 q^{30} + 8 q^{31} + 4 q^{34} - 12 q^{35} + 4 q^{39} + 8 q^{45} - 20 q^{46} - 16 q^{49} + 12 q^{50} + 4 q^{51} + 4 q^{54} - 4 q^{55} - 12 q^{56} + 12 q^{59} + 12 q^{60} + 40 q^{61} - 4 q^{64} + 24 q^{65} - 8 q^{66} - 44 q^{69} + 4 q^{70} - 48 q^{71} + 12 q^{75} - 4 q^{76} - 8 q^{79} - 4 q^{81} - 4 q^{84} - 24 q^{86} + 24 q^{90} + 52 q^{91} - 4 q^{96} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/190\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.41421i 1.39385i −0.717146 0.696923i \(-0.754552\pi\)
0.717146 0.696923i \(-0.245448\pi\)
\(4\) −1.00000 −0.500000
\(5\) −0.707107 2.12132i −0.316228 0.948683i
\(6\) −2.41421 −0.985599
\(7\) 1.58579i 0.599371i 0.954038 + 0.299685i \(0.0968817\pi\)
−0.954038 + 0.299685i \(0.903118\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −2.82843 −0.942809
\(10\) −2.12132 + 0.707107i −0.670820 + 0.223607i
\(11\) 1.41421 0.426401 0.213201 0.977008i \(-0.431611\pi\)
0.213201 + 0.977008i \(0.431611\pi\)
\(12\) 2.41421i 0.696923i
\(13\) 0.171573i 0.0475858i −0.999717 0.0237929i \(-0.992426\pi\)
0.999717 0.0237929i \(-0.00757422\pi\)
\(14\) 1.58579 0.423819
\(15\) −5.12132 + 1.70711i −1.32232 + 0.440773i
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i 0.992620 + 0.121268i \(0.0386960\pi\)
−0.992620 + 0.121268i \(0.961304\pi\)
\(18\) 2.82843i 0.666667i
\(19\) 1.00000 0.229416
\(20\) 0.707107 + 2.12132i 0.158114 + 0.474342i
\(21\) 3.82843 0.835431
\(22\) 1.41421i 0.301511i
\(23\) 9.24264i 1.92722i −0.267305 0.963612i \(-0.586133\pi\)
0.267305 0.963612i \(-0.413867\pi\)
\(24\) 2.41421 0.492799
\(25\) −4.00000 + 3.00000i −0.800000 + 0.600000i
\(26\) −0.171573 −0.0336482
\(27\) 0.414214i 0.0797154i
\(28\) 1.58579i 0.299685i
\(29\) 5.82843 1.08231 0.541156 0.840922i \(-0.317987\pi\)
0.541156 + 0.840922i \(0.317987\pi\)
\(30\) 1.70711 + 5.12132i 0.311674 + 0.935021i
\(31\) −2.24264 −0.402790 −0.201395 0.979510i \(-0.564548\pi\)
−0.201395 + 0.979510i \(0.564548\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 3.41421i 0.594338i
\(34\) 1.00000 0.171499
\(35\) 3.36396 1.12132i 0.568613 0.189538i
\(36\) 2.82843 0.471405
\(37\) 8.48528i 1.39497i 0.716599 + 0.697486i \(0.245698\pi\)
−0.716599 + 0.697486i \(0.754302\pi\)
\(38\) 1.00000i 0.162221i
\(39\) −0.414214 −0.0663273
\(40\) 2.12132 0.707107i 0.335410 0.111803i
\(41\) 4.24264 0.662589 0.331295 0.943527i \(-0.392515\pi\)
0.331295 + 0.943527i \(0.392515\pi\)
\(42\) 3.82843i 0.590739i
\(43\) 10.2426i 1.56199i −0.624538 0.780994i \(-0.714713\pi\)
0.624538 0.780994i \(-0.285287\pi\)
\(44\) −1.41421 −0.213201
\(45\) 2.00000 + 6.00000i 0.298142 + 0.894427i
\(46\) −9.24264 −1.36275
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 2.41421i 0.348462i
\(49\) 4.48528 0.640754
\(50\) 3.00000 + 4.00000i 0.424264 + 0.565685i
\(51\) 2.41421 0.338058
\(52\) 0.171573i 0.0237929i
\(53\) 11.4853i 1.57762i 0.614634 + 0.788812i \(0.289304\pi\)
−0.614634 + 0.788812i \(0.710696\pi\)
\(54\) −0.414214 −0.0563673
\(55\) −1.00000 3.00000i −0.134840 0.404520i
\(56\) −1.58579 −0.211910
\(57\) 2.41421i 0.319770i
\(58\) 5.82843i 0.765310i
\(59\) 12.8995 1.67937 0.839686 0.543073i \(-0.182739\pi\)
0.839686 + 0.543073i \(0.182739\pi\)
\(60\) 5.12132 1.70711i 0.661160 0.220387i
\(61\) 5.75736 0.737154 0.368577 0.929597i \(-0.379845\pi\)
0.368577 + 0.929597i \(0.379845\pi\)
\(62\) 2.24264i 0.284816i
\(63\) 4.48528i 0.565092i
\(64\) −1.00000 −0.125000
\(65\) −0.363961 + 0.121320i −0.0451438 + 0.0150479i
\(66\) −3.41421 −0.420261
\(67\) 13.2426i 1.61785i 0.587915 + 0.808923i \(0.299949\pi\)
−0.587915 + 0.808923i \(0.700051\pi\)
\(68\) 1.00000i 0.121268i
\(69\) −22.3137 −2.68625
\(70\) −1.12132 3.36396i −0.134023 0.402070i
\(71\) −10.5858 −1.25630 −0.628151 0.778092i \(-0.716188\pi\)
−0.628151 + 0.778092i \(0.716188\pi\)
\(72\) 2.82843i 0.333333i
\(73\) 5.48528i 0.642004i 0.947079 + 0.321002i \(0.104020\pi\)
−0.947079 + 0.321002i \(0.895980\pi\)
\(74\) 8.48528 0.986394
\(75\) 7.24264 + 9.65685i 0.836308 + 1.11508i
\(76\) −1.00000 −0.114708
\(77\) 2.24264i 0.255573i
\(78\) 0.414214i 0.0469005i
\(79\) −10.4853 −1.17969 −0.589843 0.807518i \(-0.700810\pi\)
−0.589843 + 0.807518i \(0.700810\pi\)
\(80\) −0.707107 2.12132i −0.0790569 0.237171i
\(81\) −9.48528 −1.05392
\(82\) 4.24264i 0.468521i
\(83\) 2.48528i 0.272795i 0.990654 + 0.136398i \(0.0435524\pi\)
−0.990654 + 0.136398i \(0.956448\pi\)
\(84\) −3.82843 −0.417716
\(85\) 2.12132 0.707107i 0.230089 0.0766965i
\(86\) −10.2426 −1.10449
\(87\) 14.0711i 1.50858i
\(88\) 1.41421i 0.150756i
\(89\) 7.07107 0.749532 0.374766 0.927119i \(-0.377723\pi\)
0.374766 + 0.927119i \(0.377723\pi\)
\(90\) 6.00000 2.00000i 0.632456 0.210819i
\(91\) 0.272078 0.0285215
\(92\) 9.24264i 0.963612i
\(93\) 5.41421i 0.561428i
\(94\) 0 0
\(95\) −0.707107 2.12132i −0.0725476 0.217643i
\(96\) −2.41421 −0.246400
\(97\) 11.6569i 1.18357i −0.806094 0.591787i \(-0.798423\pi\)
0.806094 0.591787i \(-0.201577\pi\)
\(98\) 4.48528i 0.453082i
\(99\) −4.00000 −0.402015
\(100\) 4.00000 3.00000i 0.400000 0.300000i
\(101\) −1.07107 −0.106575 −0.0532876 0.998579i \(-0.516970\pi\)
−0.0532876 + 0.998579i \(0.516970\pi\)
\(102\) 2.41421i 0.239043i
\(103\) 4.24264i 0.418040i 0.977911 + 0.209020i \(0.0670273\pi\)
−0.977911 + 0.209020i \(0.932973\pi\)
\(104\) 0.171573 0.0168241
\(105\) −2.70711 8.12132i −0.264187 0.792560i
\(106\) 11.4853 1.11555
\(107\) 5.72792i 0.553739i −0.960908 0.276870i \(-0.910703\pi\)
0.960908 0.276870i \(-0.0892970\pi\)
\(108\) 0.414214i 0.0398577i
\(109\) −15.9706 −1.52970 −0.764851 0.644207i \(-0.777188\pi\)
−0.764851 + 0.644207i \(0.777188\pi\)
\(110\) −3.00000 + 1.00000i −0.286039 + 0.0953463i
\(111\) 20.4853 1.94438
\(112\) 1.58579i 0.149843i
\(113\) 1.75736i 0.165318i 0.996578 + 0.0826592i \(0.0263413\pi\)
−0.996578 + 0.0826592i \(0.973659\pi\)
\(114\) −2.41421 −0.226112
\(115\) −19.6066 + 6.53553i −1.82833 + 0.609442i
\(116\) −5.82843 −0.541156
\(117\) 0.485281i 0.0448643i
\(118\) 12.8995i 1.18749i
\(119\) −1.58579 −0.145369
\(120\) −1.70711 5.12132i −0.155837 0.467510i
\(121\) −9.00000 −0.818182
\(122\) 5.75736i 0.521247i
\(123\) 10.2426i 0.923548i
\(124\) 2.24264 0.201395
\(125\) 9.19239 + 6.36396i 0.822192 + 0.569210i
\(126\) −4.48528 −0.399581
\(127\) 14.4853i 1.28536i 0.766134 + 0.642680i \(0.222178\pi\)
−0.766134 + 0.642680i \(0.777822\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −24.7279 −2.17717
\(130\) 0.121320 + 0.363961i 0.0106405 + 0.0319215i
\(131\) 16.9706 1.48272 0.741362 0.671105i \(-0.234180\pi\)
0.741362 + 0.671105i \(0.234180\pi\)
\(132\) 3.41421i 0.297169i
\(133\) 1.58579i 0.137505i
\(134\) 13.2426 1.14399
\(135\) −0.878680 + 0.292893i −0.0756247 + 0.0252082i
\(136\) −1.00000 −0.0857493
\(137\) 13.0000i 1.11066i 0.831628 + 0.555332i \(0.187409\pi\)
−0.831628 + 0.555332i \(0.812591\pi\)
\(138\) 22.3137i 1.89947i
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) −3.36396 + 1.12132i −0.284307 + 0.0947689i
\(141\) 0 0
\(142\) 10.5858i 0.888339i
\(143\) 0.242641i 0.0202906i
\(144\) −2.82843 −0.235702
\(145\) −4.12132 12.3640i −0.342257 1.02677i
\(146\) 5.48528 0.453965
\(147\) 10.8284i 0.893114i
\(148\) 8.48528i 0.697486i
\(149\) −6.34315 −0.519651 −0.259825 0.965656i \(-0.583665\pi\)
−0.259825 + 0.965656i \(0.583665\pi\)
\(150\) 9.65685 7.24264i 0.788479 0.591359i
\(151\) 6.48528 0.527765 0.263882 0.964555i \(-0.414997\pi\)
0.263882 + 0.964555i \(0.414997\pi\)
\(152\) 1.00000i 0.0811107i
\(153\) 2.82843i 0.228665i
\(154\) 2.24264 0.180717
\(155\) 1.58579 + 4.75736i 0.127373 + 0.382120i
\(156\) 0.414214 0.0331636
\(157\) 0.343146i 0.0273860i 0.999906 + 0.0136930i \(0.00435876\pi\)
−0.999906 + 0.0136930i \(0.995641\pi\)
\(158\) 10.4853i 0.834164i
\(159\) 27.7279 2.19897
\(160\) −2.12132 + 0.707107i −0.167705 + 0.0559017i
\(161\) 14.6569 1.15512
\(162\) 9.48528i 0.745234i
\(163\) 1.75736i 0.137647i 0.997629 + 0.0688235i \(0.0219245\pi\)
−0.997629 + 0.0688235i \(0.978075\pi\)
\(164\) −4.24264 −0.331295
\(165\) −7.24264 + 2.41421i −0.563839 + 0.187946i
\(166\) 2.48528 0.192895
\(167\) 9.75736i 0.755047i −0.926000 0.377524i \(-0.876776\pi\)
0.926000 0.377524i \(-0.123224\pi\)
\(168\) 3.82843i 0.295370i
\(169\) 12.9706 0.997736
\(170\) −0.707107 2.12132i −0.0542326 0.162698i
\(171\) −2.82843 −0.216295
\(172\) 10.2426i 0.780994i
\(173\) 16.4853i 1.25335i 0.779280 + 0.626676i \(0.215585\pi\)
−0.779280 + 0.626676i \(0.784415\pi\)
\(174\) −14.0711 −1.06672
\(175\) −4.75736 6.34315i −0.359623 0.479497i
\(176\) 1.41421 0.106600
\(177\) 31.1421i 2.34079i
\(178\) 7.07107i 0.529999i
\(179\) 0.343146 0.0256479 0.0128240 0.999918i \(-0.495918\pi\)
0.0128240 + 0.999918i \(0.495918\pi\)
\(180\) −2.00000 6.00000i −0.149071 0.447214i
\(181\) 8.48528 0.630706 0.315353 0.948974i \(-0.397877\pi\)
0.315353 + 0.948974i \(0.397877\pi\)
\(182\) 0.272078i 0.0201678i
\(183\) 13.8995i 1.02748i
\(184\) 9.24264 0.681377
\(185\) 18.0000 6.00000i 1.32339 0.441129i
\(186\) 5.41421 0.396989
\(187\) 1.41421i 0.103418i
\(188\) 0 0
\(189\) 0.656854 0.0477791
\(190\) −2.12132 + 0.707107i −0.153897 + 0.0512989i
\(191\) −18.5563 −1.34269 −0.671345 0.741145i \(-0.734283\pi\)
−0.671345 + 0.741145i \(0.734283\pi\)
\(192\) 2.41421i 0.174231i
\(193\) 11.6569i 0.839079i 0.907737 + 0.419539i \(0.137808\pi\)
−0.907737 + 0.419539i \(0.862192\pi\)
\(194\) −11.6569 −0.836913
\(195\) 0.292893 + 0.878680i 0.0209745 + 0.0629236i
\(196\) −4.48528 −0.320377
\(197\) 20.2426i 1.44223i −0.692816 0.721114i \(-0.743630\pi\)
0.692816 0.721114i \(-0.256370\pi\)
\(198\) 4.00000i 0.284268i
\(199\) −0.757359 −0.0536878 −0.0268439 0.999640i \(-0.508546\pi\)
−0.0268439 + 0.999640i \(0.508546\pi\)
\(200\) −3.00000 4.00000i −0.212132 0.282843i
\(201\) 31.9706 2.25503
\(202\) 1.07107i 0.0753601i
\(203\) 9.24264i 0.648706i
\(204\) −2.41421 −0.169029
\(205\) −3.00000 9.00000i −0.209529 0.628587i
\(206\) 4.24264 0.295599
\(207\) 26.1421i 1.81700i
\(208\) 0.171573i 0.0118964i
\(209\) 1.41421 0.0978232
\(210\) −8.12132 + 2.70711i −0.560424 + 0.186808i
\(211\) 5.72792 0.394326 0.197163 0.980371i \(-0.436827\pi\)
0.197163 + 0.980371i \(0.436827\pi\)
\(212\) 11.4853i 0.788812i
\(213\) 25.5563i 1.75109i
\(214\) −5.72792 −0.391553
\(215\) −21.7279 + 7.24264i −1.48183 + 0.493944i
\(216\) 0.414214 0.0281837
\(217\) 3.55635i 0.241421i
\(218\) 15.9706i 1.08166i
\(219\) 13.2426 0.894855
\(220\) 1.00000 + 3.00000i 0.0674200 + 0.202260i
\(221\) 0.171573 0.0115412
\(222\) 20.4853i 1.37488i
\(223\) 20.8284i 1.39477i 0.716694 + 0.697387i \(0.245654\pi\)
−0.716694 + 0.697387i \(0.754346\pi\)
\(224\) 1.58579 0.105955
\(225\) 11.3137 8.48528i 0.754247 0.565685i
\(226\) 1.75736 0.116898
\(227\) 25.2426i 1.67541i −0.546121 0.837706i \(-0.683896\pi\)
0.546121 0.837706i \(-0.316104\pi\)
\(228\) 2.41421i 0.159885i
\(229\) 18.9706 1.25361 0.626805 0.779176i \(-0.284362\pi\)
0.626805 + 0.779176i \(0.284362\pi\)
\(230\) 6.53553 + 19.6066i 0.430940 + 1.29282i
\(231\) 5.41421 0.356229
\(232\) 5.82843i 0.382655i
\(233\) 8.97056i 0.587681i −0.955854 0.293841i \(-0.905067\pi\)
0.955854 0.293841i \(-0.0949335\pi\)
\(234\) 0.485281 0.0317238
\(235\) 0 0
\(236\) −12.8995 −0.839686
\(237\) 25.3137i 1.64430i
\(238\) 1.58579i 0.102791i
\(239\) −12.8995 −0.834399 −0.417199 0.908815i \(-0.636988\pi\)
−0.417199 + 0.908815i \(0.636988\pi\)
\(240\) −5.12132 + 1.70711i −0.330580 + 0.110193i
\(241\) −24.9706 −1.60850 −0.804248 0.594294i \(-0.797431\pi\)
−0.804248 + 0.594294i \(0.797431\pi\)
\(242\) 9.00000i 0.578542i
\(243\) 21.6569i 1.38929i
\(244\) −5.75736 −0.368577
\(245\) −3.17157 9.51472i −0.202624 0.607873i
\(246\) −10.2426 −0.653047
\(247\) 0.171573i 0.0109169i
\(248\) 2.24264i 0.142408i
\(249\) 6.00000 0.380235
\(250\) 6.36396 9.19239i 0.402492 0.581378i
\(251\) −27.5563 −1.73934 −0.869671 0.493632i \(-0.835669\pi\)
−0.869671 + 0.493632i \(0.835669\pi\)
\(252\) 4.48528i 0.282546i
\(253\) 13.0711i 0.821771i
\(254\) 14.4853 0.908887
\(255\) −1.70711 5.12132i −0.106903 0.320710i
\(256\) 1.00000 0.0625000
\(257\) 4.72792i 0.294920i −0.989068 0.147460i \(-0.952890\pi\)
0.989068 0.147460i \(-0.0471097\pi\)
\(258\) 24.7279i 1.53949i
\(259\) −13.4558 −0.836105
\(260\) 0.363961 0.121320i 0.0225719 0.00752397i
\(261\) −16.4853 −1.02041
\(262\) 16.9706i 1.04844i
\(263\) 6.97056i 0.429823i −0.976633 0.214912i \(-0.931054\pi\)
0.976633 0.214912i \(-0.0689464\pi\)
\(264\) 3.41421 0.210130
\(265\) 24.3640 8.12132i 1.49667 0.498889i
\(266\) 1.58579 0.0972308
\(267\) 17.0711i 1.04473i
\(268\) 13.2426i 0.808923i
\(269\) −28.6274 −1.74544 −0.872722 0.488217i \(-0.837647\pi\)
−0.872722 + 0.488217i \(0.837647\pi\)
\(270\) 0.292893 + 0.878680i 0.0178249 + 0.0534747i
\(271\) −18.7574 −1.13943 −0.569714 0.821843i \(-0.692946\pi\)
−0.569714 + 0.821843i \(0.692946\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 0.656854i 0.0397546i
\(274\) 13.0000 0.785359
\(275\) −5.65685 + 4.24264i −0.341121 + 0.255841i
\(276\) 22.3137 1.34313
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 12.0000i 0.719712i
\(279\) 6.34315 0.379754
\(280\) 1.12132 + 3.36396i 0.0670117 + 0.201035i
\(281\) −4.24264 −0.253095 −0.126547 0.991961i \(-0.540390\pi\)
−0.126547 + 0.991961i \(0.540390\pi\)
\(282\) 0 0
\(283\) 3.85786i 0.229326i −0.993404 0.114663i \(-0.963421\pi\)
0.993404 0.114663i \(-0.0365789\pi\)
\(284\) 10.5858 0.628151
\(285\) −5.12132 + 1.70711i −0.303361 + 0.101120i
\(286\) −0.242641 −0.0143476
\(287\) 6.72792i 0.397137i
\(288\) 2.82843i 0.166667i
\(289\) 16.0000 0.941176
\(290\) −12.3640 + 4.12132i −0.726037 + 0.242012i
\(291\) −28.1421 −1.64972
\(292\) 5.48528i 0.321002i
\(293\) 11.4853i 0.670977i −0.942044 0.335489i \(-0.891099\pi\)
0.942044 0.335489i \(-0.108901\pi\)
\(294\) −10.8284 −0.631527
\(295\) −9.12132 27.3640i −0.531064 1.59319i
\(296\) −8.48528 −0.493197
\(297\) 0.585786i 0.0339908i
\(298\) 6.34315i 0.367449i
\(299\) −1.58579 −0.0917084
\(300\) −7.24264 9.65685i −0.418154 0.557539i
\(301\) 16.2426 0.936210
\(302\) 6.48528i 0.373186i
\(303\) 2.58579i 0.148550i
\(304\) 1.00000 0.0573539
\(305\) −4.07107 12.2132i −0.233109 0.699326i
\(306\) −2.82843 −0.161690
\(307\) 6.34315i 0.362022i −0.983481 0.181011i \(-0.942063\pi\)
0.983481 0.181011i \(-0.0579370\pi\)
\(308\) 2.24264i 0.127786i
\(309\) 10.2426 0.582683
\(310\) 4.75736 1.58579i 0.270200 0.0900666i
\(311\) −13.2426 −0.750921 −0.375461 0.926838i \(-0.622515\pi\)
−0.375461 + 0.926838i \(0.622515\pi\)
\(312\) 0.414214i 0.0234502i
\(313\) 25.9706i 1.46794i −0.679180 0.733971i \(-0.737665\pi\)
0.679180 0.733971i \(-0.262335\pi\)
\(314\) 0.343146 0.0193648
\(315\) −9.51472 + 3.17157i −0.536094 + 0.178698i
\(316\) 10.4853 0.589843
\(317\) 7.48528i 0.420415i 0.977657 + 0.210208i \(0.0674140\pi\)
−0.977657 + 0.210208i \(0.932586\pi\)
\(318\) 27.7279i 1.55490i
\(319\) 8.24264 0.461499
\(320\) 0.707107 + 2.12132i 0.0395285 + 0.118585i
\(321\) −13.8284 −0.771828
\(322\) 14.6569i 0.816795i
\(323\) 1.00000i 0.0556415i
\(324\) 9.48528 0.526960
\(325\) 0.514719 + 0.686292i 0.0285515 + 0.0380686i
\(326\) 1.75736 0.0973311
\(327\) 38.5563i 2.13217i
\(328\) 4.24264i 0.234261i
\(329\) 0 0
\(330\) 2.41421 + 7.24264i 0.132898 + 0.398694i
\(331\) −10.7574 −0.591278 −0.295639 0.955300i \(-0.595533\pi\)
−0.295639 + 0.955300i \(0.595533\pi\)
\(332\) 2.48528i 0.136398i
\(333\) 24.0000i 1.31519i
\(334\) −9.75736 −0.533899
\(335\) 28.0919 9.36396i 1.53482 0.511608i
\(336\) 3.82843 0.208858
\(337\) 33.8995i 1.84662i 0.384052 + 0.923312i \(0.374528\pi\)
−0.384052 + 0.923312i \(0.625472\pi\)
\(338\) 12.9706i 0.705506i
\(339\) 4.24264 0.230429
\(340\) −2.12132 + 0.707107i −0.115045 + 0.0383482i
\(341\) −3.17157 −0.171750
\(342\) 2.82843i 0.152944i
\(343\) 18.2132i 0.983421i
\(344\) 10.2426 0.552246
\(345\) 15.7782 + 47.3345i 0.849468 + 2.54841i
\(346\) 16.4853 0.886254
\(347\) 22.4853i 1.20707i −0.797335 0.603537i \(-0.793758\pi\)
0.797335 0.603537i \(-0.206242\pi\)
\(348\) 14.0711i 0.754288i
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) −6.34315 + 4.75736i −0.339055 + 0.254292i
\(351\) −0.0710678 −0.00379332
\(352\) 1.41421i 0.0753778i
\(353\) 19.4853i 1.03710i 0.855048 + 0.518548i \(0.173527\pi\)
−0.855048 + 0.518548i \(0.826473\pi\)
\(354\) −31.1421 −1.65519
\(355\) 7.48528 + 22.4558i 0.397277 + 1.19183i
\(356\) −7.07107 −0.374766
\(357\) 3.82843i 0.202622i
\(358\) 0.343146i 0.0181358i
\(359\) 31.2426 1.64892 0.824462 0.565918i \(-0.191478\pi\)
0.824462 + 0.565918i \(0.191478\pi\)
\(360\) −6.00000 + 2.00000i −0.316228 + 0.105409i
\(361\) 1.00000 0.0526316
\(362\) 8.48528i 0.445976i
\(363\) 21.7279i 1.14042i
\(364\) −0.272078 −0.0142608
\(365\) 11.6360 3.87868i 0.609058 0.203019i
\(366\) −13.8995 −0.726538
\(367\) 25.4558i 1.32878i 0.747384 + 0.664392i \(0.231309\pi\)
−0.747384 + 0.664392i \(0.768691\pi\)
\(368\) 9.24264i 0.481806i
\(369\) −12.0000 −0.624695
\(370\) −6.00000 18.0000i −0.311925 0.935775i
\(371\) −18.2132 −0.945582
\(372\) 5.41421i 0.280714i
\(373\) 9.00000i 0.466002i −0.972476 0.233001i \(-0.925145\pi\)
0.972476 0.233001i \(-0.0748546\pi\)
\(374\) 1.41421 0.0731272
\(375\) 15.3640 22.1924i 0.793392 1.14601i
\(376\) 0 0
\(377\) 1.00000i 0.0515026i
\(378\) 0.656854i 0.0337849i
\(379\) −2.75736 −0.141636 −0.0708180 0.997489i \(-0.522561\pi\)
−0.0708180 + 0.997489i \(0.522561\pi\)
\(380\) 0.707107 + 2.12132i 0.0362738 + 0.108821i
\(381\) 34.9706 1.79160
\(382\) 18.5563i 0.949425i
\(383\) 3.75736i 0.191992i −0.995382 0.0959960i \(-0.969396\pi\)
0.995382 0.0959960i \(-0.0306036\pi\)
\(384\) 2.41421 0.123200
\(385\) 4.75736 1.58579i 0.242457 0.0808192i
\(386\) 11.6569 0.593318
\(387\) 28.9706i 1.47266i
\(388\) 11.6569i 0.591787i
\(389\) −37.0711 −1.87958 −0.939789 0.341756i \(-0.888979\pi\)
−0.939789 + 0.341756i \(0.888979\pi\)
\(390\) 0.878680 0.292893i 0.0444937 0.0148312i
\(391\) 9.24264 0.467420
\(392\) 4.48528i 0.226541i
\(393\) 40.9706i 2.06669i
\(394\) −20.2426 −1.01981
\(395\) 7.41421 + 22.2426i 0.373050 + 1.11915i
\(396\) 4.00000 0.201008
\(397\) 24.0000i 1.20453i 0.798298 + 0.602263i \(0.205734\pi\)
−0.798298 + 0.602263i \(0.794266\pi\)
\(398\) 0.757359i 0.0379630i
\(399\) 3.82843 0.191661
\(400\) −4.00000 + 3.00000i −0.200000 + 0.150000i
\(401\) −22.5858 −1.12788 −0.563940 0.825816i \(-0.690715\pi\)
−0.563940 + 0.825816i \(0.690715\pi\)
\(402\) 31.9706i 1.59455i
\(403\) 0.384776i 0.0191671i
\(404\) 1.07107 0.0532876
\(405\) 6.70711 + 20.1213i 0.333279 + 0.999836i
\(406\) 9.24264 0.458705
\(407\) 12.0000i 0.594818i
\(408\) 2.41421i 0.119521i
\(409\) 17.2132 0.851138 0.425569 0.904926i \(-0.360074\pi\)
0.425569 + 0.904926i \(0.360074\pi\)
\(410\) −9.00000 + 3.00000i −0.444478 + 0.148159i
\(411\) 31.3848 1.54810
\(412\) 4.24264i 0.209020i
\(413\) 20.4558i 1.00657i
\(414\) 26.1421 1.28482
\(415\) 5.27208 1.75736i 0.258796 0.0862654i
\(416\) −0.171573 −0.00841205
\(417\) 28.9706i 1.41869i
\(418\) 1.41421i 0.0691714i
\(419\) −16.5858 −0.810269 −0.405134 0.914257i \(-0.632775\pi\)
−0.405134 + 0.914257i \(0.632775\pi\)
\(420\) 2.70711 + 8.12132i 0.132093 + 0.396280i
\(421\) 2.51472 0.122560 0.0612799 0.998121i \(-0.480482\pi\)
0.0612799 + 0.998121i \(0.480482\pi\)
\(422\) 5.72792i 0.278831i
\(423\) 0 0
\(424\) −11.4853 −0.557775
\(425\) −3.00000 4.00000i −0.145521 0.194029i
\(426\) 25.5563 1.23821
\(427\) 9.12994i 0.441829i
\(428\) 5.72792i 0.276870i
\(429\) −0.585786 −0.0282820
\(430\) 7.24264 + 21.7279i 0.349271 + 1.04781i
\(431\) 30.3848 1.46358 0.731792 0.681528i \(-0.238684\pi\)
0.731792 + 0.681528i \(0.238684\pi\)
\(432\) 0.414214i 0.0199289i
\(433\) 21.5563i 1.03593i −0.855401 0.517966i \(-0.826689\pi\)
0.855401 0.517966i \(-0.173311\pi\)
\(434\) −3.55635 −0.170710
\(435\) −29.8492 + 9.94975i −1.43116 + 0.477054i
\(436\) 15.9706 0.764851
\(437\) 9.24264i 0.442135i
\(438\) 13.2426i 0.632758i
\(439\) 14.2426 0.679764 0.339882 0.940468i \(-0.389613\pi\)
0.339882 + 0.940468i \(0.389613\pi\)
\(440\) 3.00000 1.00000i 0.143019 0.0476731i
\(441\) −12.6863 −0.604109
\(442\) 0.171573i 0.00816089i
\(443\) 4.24264i 0.201574i 0.994908 + 0.100787i \(0.0321361\pi\)
−0.994908 + 0.100787i \(0.967864\pi\)
\(444\) −20.4853 −0.972188
\(445\) −5.00000 15.0000i −0.237023 0.711068i
\(446\) 20.8284 0.986255
\(447\) 15.3137i 0.724314i
\(448\) 1.58579i 0.0749214i
\(449\) 5.31371 0.250769 0.125385 0.992108i \(-0.459983\pi\)
0.125385 + 0.992108i \(0.459983\pi\)
\(450\) −8.48528 11.3137i −0.400000 0.533333i
\(451\) 6.00000 0.282529
\(452\) 1.75736i 0.0826592i
\(453\) 15.6569i 0.735623i
\(454\) −25.2426 −1.18470
\(455\) −0.192388 0.577164i −0.00901930 0.0270579i
\(456\) 2.41421 0.113056
\(457\) 3.00000i 0.140334i −0.997535 0.0701670i \(-0.977647\pi\)
0.997535 0.0701670i \(-0.0223532\pi\)
\(458\) 18.9706i 0.886436i
\(459\) 0.414214 0.0193338
\(460\) 19.6066 6.53553i 0.914163 0.304721i
\(461\) 27.5563 1.28343 0.641714 0.766944i \(-0.278224\pi\)
0.641714 + 0.766944i \(0.278224\pi\)
\(462\) 5.41421i 0.251892i
\(463\) 14.1421i 0.657241i 0.944462 + 0.328620i \(0.106584\pi\)
−0.944462 + 0.328620i \(0.893416\pi\)
\(464\) 5.82843 0.270578
\(465\) 11.4853 3.82843i 0.532617 0.177539i
\(466\) −8.97056 −0.415553
\(467\) 24.7279i 1.14427i −0.820159 0.572136i \(-0.806115\pi\)
0.820159 0.572136i \(-0.193885\pi\)
\(468\) 0.485281i 0.0224321i
\(469\) −21.0000 −0.969690
\(470\) 0 0
\(471\) 0.828427 0.0381719
\(472\) 12.8995i 0.593747i
\(473\) 14.4853i 0.666034i
\(474\) 25.3137 1.16270
\(475\) −4.00000 + 3.00000i −0.183533 + 0.137649i
\(476\) 1.58579 0.0726844
\(477\) 32.4853i 1.48740i
\(478\) 12.8995i 0.590009i
\(479\) −31.1127 −1.42158 −0.710788 0.703407i \(-0.751661\pi\)
−0.710788 + 0.703407i \(0.751661\pi\)
\(480\) 1.70711 + 5.12132i 0.0779184 + 0.233755i
\(481\) 1.45584 0.0663808
\(482\) 24.9706i 1.13738i
\(483\) 35.3848i 1.61006i
\(484\) 9.00000 0.409091
\(485\) −24.7279 + 8.24264i −1.12284 + 0.374279i
\(486\) 21.6569 0.982375
\(487\) 1.79899i 0.0815200i −0.999169 0.0407600i \(-0.987022\pi\)
0.999169 0.0407600i \(-0.0129779\pi\)
\(488\) 5.75736i 0.260623i
\(489\) 4.24264 0.191859
\(490\) −9.51472 + 3.17157i −0.429831 + 0.143277i
\(491\) −2.44365 −0.110280 −0.0551402 0.998479i \(-0.517561\pi\)
−0.0551402 + 0.998479i \(0.517561\pi\)
\(492\) 10.2426i 0.461774i
\(493\) 5.82843i 0.262499i
\(494\) −0.171573 −0.00771943
\(495\) 2.82843 + 8.48528i 0.127128 + 0.381385i
\(496\) −2.24264 −0.100698
\(497\) 16.7868i 0.752991i
\(498\) 6.00000i 0.268866i
\(499\) 34.2426 1.53291 0.766456 0.642297i \(-0.222019\pi\)
0.766456 + 0.642297i \(0.222019\pi\)
\(500\) −9.19239 6.36396i −0.411096 0.284605i
\(501\) −23.5563 −1.05242
\(502\) 27.5563i 1.22990i
\(503\) 39.7279i 1.77138i −0.464277 0.885690i \(-0.653686\pi\)
0.464277 0.885690i \(-0.346314\pi\)
\(504\) 4.48528 0.199790
\(505\) 0.757359 + 2.27208i 0.0337020 + 0.101106i
\(506\) −13.0711 −0.581080
\(507\) 31.3137i 1.39069i
\(508\) 14.4853i 0.642680i
\(509\) 4.97056 0.220316 0.110158 0.993914i \(-0.464864\pi\)
0.110158 + 0.993914i \(0.464864\pi\)
\(510\) −5.12132 + 1.70711i −0.226776 + 0.0755920i
\(511\) −8.69848 −0.384798
\(512\) 1.00000i 0.0441942i
\(513\) 0.414214i 0.0182880i
\(514\) −4.72792 −0.208540
\(515\) 9.00000 3.00000i 0.396587 0.132196i
\(516\) 24.7279 1.08859
\(517\) 0 0
\(518\) 13.4558i 0.591216i
\(519\) 39.7990 1.74698
\(520\) −0.121320 0.363961i −0.00532025 0.0159607i
\(521\) 0.686292 0.0300670 0.0150335 0.999887i \(-0.495215\pi\)
0.0150335 + 0.999887i \(0.495215\pi\)
\(522\) 16.4853i 0.721541i
\(523\) 27.7279i 1.21246i 0.795290 + 0.606229i \(0.207318\pi\)
−0.795290 + 0.606229i \(0.792682\pi\)
\(524\) −16.9706 −0.741362
\(525\) −15.3137 + 11.4853i −0.668345 + 0.501259i
\(526\) −6.97056 −0.303931
\(527\) 2.24264i 0.0976910i
\(528\) 3.41421i 0.148585i
\(529\) −62.4264 −2.71419
\(530\) −8.12132 24.3640i −0.352768 1.05830i
\(531\) −36.4853 −1.58333
\(532\) 1.58579i 0.0687526i
\(533\) 0.727922i 0.0315298i
\(534\) −17.0711 −0.738737
\(535\) −12.1508 + 4.05025i −0.525323 + 0.175108i
\(536\) −13.2426 −0.571995
\(537\) 0.828427i 0.0357493i
\(538\) 28.6274i 1.23422i
\(539\) 6.34315 0.273219
\(540\) 0.878680 0.292893i 0.0378124 0.0126041i
\(541\) 18.2426 0.784312 0.392156 0.919899i \(-0.371729\pi\)
0.392156 + 0.919899i \(0.371729\pi\)
\(542\) 18.7574i 0.805698i
\(543\) 20.4853i 0.879108i
\(544\) 1.00000 0.0428746
\(545\) 11.2929 + 33.8787i 0.483734 + 1.45120i
\(546\) −0.656854 −0.0281108
\(547\) 5.31371i 0.227198i 0.993527 + 0.113599i \(0.0362379\pi\)
−0.993527 + 0.113599i \(0.963762\pi\)
\(548\) 13.0000i 0.555332i
\(549\) −16.2843 −0.694996
\(550\) 4.24264 + 5.65685i 0.180907 + 0.241209i
\(551\) 5.82843 0.248299
\(552\) 22.3137i 0.949735i
\(553\) 16.6274i 0.707070i
\(554\) 0 0
\(555\) −14.4853 43.4558i −0.614866 1.84460i
\(556\) −12.0000 −0.508913
\(557\) 16.0000i 0.677942i 0.940797 + 0.338971i \(0.110079\pi\)
−0.940797 + 0.338971i \(0.889921\pi\)
\(558\) 6.34315i 0.268527i
\(559\) −1.75736 −0.0743284
\(560\) 3.36396 1.12132i 0.142153 0.0473844i
\(561\) 3.41421 0.144148
\(562\) 4.24264i 0.178965i
\(563\) 28.9706i 1.22096i 0.792030 + 0.610482i \(0.209024\pi\)
−0.792030 + 0.610482i \(0.790976\pi\)
\(564\) 0 0
\(565\) 3.72792 1.24264i 0.156835 0.0522783i
\(566\) −3.85786 −0.162158
\(567\) 15.0416i 0.631689i
\(568\) 10.5858i 0.444170i
\(569\) −28.2843 −1.18574 −0.592869 0.805299i \(-0.702005\pi\)
−0.592869 + 0.805299i \(0.702005\pi\)
\(570\) 1.70711 + 5.12132i 0.0715028 + 0.214509i
\(571\) 6.24264 0.261246 0.130623 0.991432i \(-0.458302\pi\)
0.130623 + 0.991432i \(0.458302\pi\)
\(572\) 0.242641i 0.0101453i
\(573\) 44.7990i 1.87150i
\(574\) 6.72792 0.280818
\(575\) 27.7279 + 36.9706i 1.15633 + 1.54178i
\(576\) 2.82843 0.117851
\(577\) 2.31371i 0.0963209i 0.998840 + 0.0481605i \(0.0153359\pi\)
−0.998840 + 0.0481605i \(0.984664\pi\)
\(578\) 16.0000i 0.665512i
\(579\) 28.1421 1.16955
\(580\) 4.12132 + 12.3640i 0.171129 + 0.513386i
\(581\) −3.94113 −0.163505
\(582\) 28.1421i 1.16653i
\(583\) 16.2426i 0.672701i
\(584\) −5.48528 −0.226983
\(585\) 1.02944 0.343146i 0.0425620 0.0141873i
\(586\) −11.4853 −0.474453
\(587\) 21.7574i 0.898022i 0.893526 + 0.449011i \(0.148224\pi\)
−0.893526 + 0.449011i \(0.851776\pi\)
\(588\) 10.8284i 0.446557i
\(589\) −2.24264 −0.0924064
\(590\) −27.3640 + 9.12132i −1.12656 + 0.375519i
\(591\) −48.8701 −2.01025
\(592\) 8.48528i 0.348743i
\(593\) 22.0000i 0.903432i −0.892162 0.451716i \(-0.850812\pi\)
0.892162 0.451716i \(-0.149188\pi\)
\(594\) −0.585786 −0.0240351
\(595\) 1.12132 + 3.36396i 0.0459697 + 0.137909i
\(596\) 6.34315 0.259825
\(597\) 1.82843i 0.0748325i
\(598\) 1.58579i 0.0648476i
\(599\) −27.2132 −1.11190 −0.555951 0.831215i \(-0.687646\pi\)
−0.555951 + 0.831215i \(0.687646\pi\)
\(600\) −9.65685 + 7.24264i −0.394239 + 0.295680i
\(601\) −11.7574 −0.479593 −0.239796 0.970823i \(-0.577081\pi\)
−0.239796 + 0.970823i \(0.577081\pi\)
\(602\) 16.2426i 0.662001i
\(603\) 37.4558i 1.52532i
\(604\) −6.48528 −0.263882
\(605\) 6.36396 + 19.0919i 0.258732 + 0.776195i
\(606\) 2.58579 0.105040
\(607\) 8.82843i 0.358335i 0.983819 + 0.179167i \(0.0573404\pi\)
−0.983819 + 0.179167i \(0.942660\pi\)
\(608\) 1.00000i 0.0405554i
\(609\) 22.3137 0.904197
\(610\) −12.2132 + 4.07107i −0.494498 + 0.164833i
\(611\) 0 0
\(612\) 2.82843i 0.114332i
\(613\) 47.6985i 1.92652i −0.268564 0.963262i \(-0.586549\pi\)
0.268564 0.963262i \(-0.413451\pi\)
\(614\) −6.34315 −0.255989
\(615\) −21.7279 + 7.24264i −0.876154 + 0.292051i
\(616\) −2.24264 −0.0903586
\(617\) 12.4853i 0.502639i 0.967904 + 0.251319i \(0.0808644\pi\)
−0.967904 + 0.251319i \(0.919136\pi\)
\(618\) 10.2426i 0.412019i
\(619\) −16.2426 −0.652847 −0.326423 0.945224i \(-0.605844\pi\)
−0.326423 + 0.945224i \(0.605844\pi\)
\(620\) −1.58579 4.75736i −0.0636867 0.191060i
\(621\) −3.82843 −0.153629
\(622\) 13.2426i 0.530982i
\(623\) 11.2132i 0.449248i
\(624\) −0.414214 −0.0165818
\(625\) 7.00000 24.0000i 0.280000 0.960000i
\(626\) −25.9706 −1.03799
\(627\) 3.41421i 0.136351i
\(628\) 0.343146i 0.0136930i
\(629\) −8.48528 −0.338330
\(630\) 3.17157 + 9.51472i 0.126358 + 0.379075i
\(631\) −5.02944 −0.200219 −0.100109 0.994976i \(-0.531919\pi\)
−0.100109 + 0.994976i \(0.531919\pi\)
\(632\) 10.4853i 0.417082i
\(633\) 13.8284i 0.549631i
\(634\) 7.48528 0.297279
\(635\) 30.7279 10.2426i 1.21940 0.406467i
\(636\) −27.7279 −1.09948
\(637\) 0.769553i 0.0304908i
\(638\) 8.24264i 0.326329i
\(639\) 29.9411 1.18445
\(640\) 2.12132 0.707107i 0.0838525 0.0279508i
\(641\) 30.0416 1.18657 0.593287 0.804991i \(-0.297830\pi\)
0.593287 + 0.804991i \(0.297830\pi\)
\(642\) 13.8284i 0.545764i
\(643\) 2.48528i 0.0980099i −0.998799 0.0490050i \(-0.984395\pi\)
0.998799 0.0490050i \(-0.0156050\pi\)
\(644\) −14.6569 −0.577561
\(645\) 17.4853 + 52.4558i 0.688482 + 2.06545i
\(646\) 1.00000 0.0393445
\(647\) 27.2426i 1.07102i −0.844529 0.535509i \(-0.820120\pi\)
0.844529 0.535509i \(-0.179880\pi\)
\(648\) 9.48528i 0.372617i
\(649\) 18.2426 0.716086
\(650\) 0.686292 0.514719i 0.0269186 0.0201889i
\(651\) −8.58579 −0.336504
\(652\) 1.75736i 0.0688235i
\(653\) 4.97056i 0.194513i −0.995259 0.0972566i \(-0.968993\pi\)
0.995259 0.0972566i \(-0.0310067\pi\)
\(654\) 38.5563 1.50767
\(655\) −12.0000 36.0000i −0.468879 1.40664i
\(656\) 4.24264 0.165647
\(657\) 15.5147i 0.605287i
\(658\) 0 0
\(659\) 0.899495 0.0350393 0.0175197 0.999847i \(-0.494423\pi\)
0.0175197 + 0.999847i \(0.494423\pi\)
\(660\) 7.24264 2.41421i 0.281919 0.0939731i
\(661\) 32.4558 1.26239 0.631193 0.775626i \(-0.282566\pi\)
0.631193 + 0.775626i \(0.282566\pi\)
\(662\) 10.7574i 0.418097i
\(663\) 0.414214i 0.0160867i
\(664\) −2.48528 −0.0964476
\(665\) 3.36396 1.12132i 0.130449 0.0434829i
\(666\) −24.0000 −0.929981
\(667\) 53.8701i 2.08586i
\(668\) 9.75736i 0.377524i
\(669\) 50.2843 1.94410
\(670\) −9.36396 28.0919i −0.361761 1.08528i
\(671\) 8.14214 0.314324
\(672\) 3.82843i 0.147685i
\(673\) 12.0000i 0.462566i 0.972887 + 0.231283i \(0.0742923\pi\)
−0.972887 + 0.231283i \(0.925708\pi\)
\(674\) 33.8995 1.30576
\(675\) 1.24264 + 1.65685i 0.0478293 + 0.0637723i
\(676\) −12.9706 −0.498868
\(677\) 26.9411i 1.03543i 0.855553 + 0.517716i \(0.173218\pi\)
−0.855553 + 0.517716i \(0.826782\pi\)
\(678\) 4.24264i 0.162938i
\(679\) 18.4853 0.709400
\(680\) 0.707107 + 2.12132i 0.0271163 + 0.0813489i
\(681\) −60.9411 −2.33527
\(682\) 3.17157i 0.121446i
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 2.82843 0.108148
\(685\) 27.5772 9.19239i 1.05367 0.351223i
\(686\) 18.2132 0.695383
\(687\) 45.7990i 1.74734i
\(688\) 10.2426i 0.390497i
\(689\) 1.97056 0.0750725
\(690\) 47.3345 15.7782i 1.80199 0.600665i
\(691\) 5.51472 0.209790 0.104895 0.994483i \(-0.466549\pi\)
0.104895 + 0.994483i \(0.466549\pi\)
\(692\) 16.4853i 0.626676i
\(693\) 6.34315i 0.240956i
\(694\) −22.4853 −0.853530
\(695\) −8.48528 25.4558i −0.321865 0.965595i
\(696\) 14.0711 0.533362
\(697\) 4.24264i 0.160701i
\(698\) 6.00000i 0.227103i
\(699\) −21.6569 −0.819137
\(700\) 4.75736 + 6.34315i 0.179811 + 0.239748i
\(701\) −16.9706 −0.640969 −0.320485 0.947254i \(-0.603846\pi\)
−0.320485 + 0.947254i \(0.603846\pi\)
\(702\) 0.0710678i 0.00268228i
\(703\) 8.48528i 0.320028i
\(704\) −1.41421 −0.0533002
\(705\) 0 0
\(706\) 19.4853 0.733338
\(707\) 1.69848i 0.0638781i
\(708\) 31.1421i 1.17039i
\(709\) 34.0000 1.27690 0.638448 0.769665i \(-0.279577\pi\)
0.638448 + 0.769665i \(0.279577\pi\)
\(710\) 22.4558 7.48528i 0.842753 0.280918i
\(711\) 29.6569 1.11222
\(712\) 7.07107i 0.264999i
\(713\) 20.7279i 0.776267i
\(714\) 3.82843 0.143275
\(715\) −0.514719 + 0.171573i −0.0192494 + 0.00641646i
\(716\) −0.343146 −0.0128240
\(717\) 31.1421i 1.16302i
\(718\) 31.2426i 1.16596i
\(719\) 24.8995 0.928594 0.464297 0.885679i \(-0.346307\pi\)
0.464297 + 0.885679i \(0.346307\pi\)
\(720\) 2.00000 + 6.00000i 0.0745356 + 0.223607i
\(721\) −6.72792 −0.250561
\(722\) 1.00000i 0.0372161i
\(723\) 60.2843i 2.24200i
\(724\) −8.48528 −0.315353
\(725\) −23.3137 + 17.4853i −0.865849 + 0.649387i
\(726\) 21.7279 0.806399
\(727\) 15.7279i 0.583316i −0.956523 0.291658i \(-0.905793\pi\)
0.956523 0.291658i \(-0.0942070\pi\)
\(728\) 0.272078i 0.0100839i
\(729\) 23.8284 0.882534
\(730\) −3.87868 11.6360i −0.143556 0.430669i
\(731\) 10.2426 0.378838
\(732\) 13.8995i 0.513740i
\(733\) 12.0000i 0.443230i −0.975134 0.221615i \(-0.928867\pi\)
0.975134 0.221615i \(-0.0711328\pi\)
\(734\) 25.4558 0.939592
\(735\) −22.9706 + 7.65685i −0.847282 + 0.282427i
\(736\) −9.24264 −0.340688
\(737\) 18.7279i 0.689852i
\(738\) 12.0000i 0.441726i
\(739\) −26.7279 −0.983203 −0.491601 0.870820i \(-0.663588\pi\)
−0.491601 + 0.870820i \(0.663588\pi\)
\(740\) −18.0000 + 6.00000i −0.661693 + 0.220564i
\(741\) −0.414214 −0.0152165
\(742\) 18.2132i 0.668628i
\(743\) 18.7279i 0.687061i 0.939142 + 0.343530i \(0.111623\pi\)
−0.939142 + 0.343530i \(0.888377\pi\)
\(744\) −5.41421 −0.198495
\(745\) 4.48528 + 13.4558i 0.164328 + 0.492984i
\(746\) −9.00000 −0.329513
\(747\) 7.02944i 0.257194i
\(748\) 1.41421i 0.0517088i
\(749\) 9.08326 0.331895
\(750\) −22.1924 15.3640i −0.810351 0.561013i
\(751\) −1.27208 −0.0464188 −0.0232094 0.999731i \(-0.507388\pi\)
−0.0232094 + 0.999731i \(0.507388\pi\)
\(752\) 0 0
\(753\) 66.5269i 2.42438i
\(754\) −1.00000 −0.0364179
\(755\) −4.58579 13.7574i −0.166894 0.500682i
\(756\) −0.656854 −0.0238896
\(757\) 23.6569i 0.859823i 0.902871 + 0.429911i \(0.141455\pi\)
−0.902871 + 0.429911i \(0.858545\pi\)
\(758\) 2.75736i 0.100152i
\(759\) −31.5563 −1.14542
\(760\) 2.12132 0.707107i 0.0769484 0.0256495i
\(761\) 10.0294 0.363567 0.181783 0.983339i \(-0.441813\pi\)
0.181783 + 0.983339i \(0.441813\pi\)
\(762\) 34.9706i 1.26685i
\(763\) 25.3259i 0.916859i
\(764\) 18.5563 0.671345
\(765\) −6.00000 + 2.00000i −0.216930 + 0.0723102i
\(766\) −3.75736 −0.135759
\(767\) 2.21320i 0.0799141i
\(768\) 2.41421i 0.0871154i
\(769\) −14.4558 −0.521291 −0.260646 0.965435i \(-0.583935\pi\)
−0.260646 + 0.965435i \(0.583935\pi\)
\(770\) −1.58579 4.75736i −0.0571478 0.171443i
\(771\) −11.4142 −0.411073
\(772\) 11.6569i 0.419539i
\(773\) 19.9706i 0.718291i 0.933282 + 0.359146i \(0.116932\pi\)
−0.933282 + 0.359146i \(0.883068\pi\)
\(774\) 28.9706 1.04133
\(775\) 8.97056 6.72792i 0.322232 0.241674i
\(776\) 11.6569 0.418457
\(777\) 32.4853i 1.16540i
\(778\) 37.0711i 1.32906i
\(779\) 4.24264 0.152008
\(780\) −0.292893 0.878680i −0.0104873 0.0314618i
\(781\) −14.9706 −0.535689
\(782\) 9.24264i 0.330516i