Properties

Label 190.2.b
Level $190$
Weight $2$
Character orbit 190.b
Rep. character $\chi_{190}(39,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $2$
Sturm bound $60$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 190 = 2 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 190.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(60\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(190, [\chi])\).

Total New Old
Modular forms 34 10 24
Cusp forms 26 10 16
Eisenstein series 8 0 8

Trace form

\( 10 q - 10 q^{4} + 2 q^{5} - 10 q^{9} + O(q^{10}) \) \( 10 q - 10 q^{4} + 2 q^{5} - 10 q^{9} + 4 q^{14} - 4 q^{15} + 10 q^{16} - 2 q^{19} - 2 q^{20} - 16 q^{21} - 6 q^{25} + 4 q^{26} + 28 q^{29} - 12 q^{30} + 16 q^{31} + 8 q^{34} - 4 q^{35} + 10 q^{36} - 16 q^{39} + 4 q^{41} + 26 q^{45} - 20 q^{46} - 10 q^{49} + 8 q^{50} - 8 q^{51} - 4 q^{56} + 8 q^{59} + 4 q^{60} - 20 q^{61} - 10 q^{64} + 12 q^{65} + 8 q^{66} - 16 q^{70} - 64 q^{71} - 28 q^{74} + 56 q^{75} + 2 q^{76} - 8 q^{79} + 2 q^{80} - 38 q^{81} + 16 q^{84} - 12 q^{85} + 12 q^{86} + 28 q^{89} + 12 q^{90} + 64 q^{91} + 28 q^{94} - 2 q^{95} + 8 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(190, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
190.2.b.a 190.b 5.b $4$ $1.517$ \(\Q(\zeta_{8})\) None 190.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{8}^{2}q^{2}+(\zeta_{8}-\zeta_{8}^{2}+\zeta_{8}^{3})q^{3}-q^{4}+\cdots\)
190.2.b.b 190.b 5.b $6$ $1.517$ 6.0.5161984.1 None 190.2.b.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}+(\beta _{4}+\beta _{5})q^{3}-q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(190, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(190, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)