Properties

Label 190.2
Level 190
Weight 2
Dimension 331
Nonzero newspaces 9
Newform subspaces 20
Sturm bound 4320
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 190 = 2 \cdot 5 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 9 \)
Newform subspaces: \( 20 \)
Sturm bound: \(4320\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(190))\).

Total New Old
Modular forms 1224 331 893
Cusp forms 937 331 606
Eisenstein series 287 0 287

Trace form

\( 331 q + q^{2} + 4 q^{3} + q^{4} + q^{5} + 4 q^{6} + 8 q^{7} + q^{8} + 13 q^{9} + q^{10} + 12 q^{11} - 8 q^{12} - 34 q^{13} - 28 q^{14} - 32 q^{15} + q^{16} - 18 q^{17} - 41 q^{18} - 65 q^{19} - 17 q^{20}+ \cdots + 318 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(190))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
190.2.a \(\chi_{190}(1, \cdot)\) 190.2.a.a 1 1
190.2.a.b 1
190.2.a.c 1
190.2.a.d 2
190.2.b \(\chi_{190}(39, \cdot)\) 190.2.b.a 4 1
190.2.b.b 6
190.2.e \(\chi_{190}(11, \cdot)\) 190.2.e.a 2 2
190.2.e.b 2
190.2.e.c 4
190.2.f \(\chi_{190}(37, \cdot)\) 190.2.f.a 4 2
190.2.f.b 16
190.2.i \(\chi_{190}(49, \cdot)\) 190.2.i.a 20 2
190.2.k \(\chi_{190}(61, \cdot)\) 190.2.k.a 6 6
190.2.k.b 12
190.2.k.c 12
190.2.k.d 18
190.2.m \(\chi_{190}(27, \cdot)\) 190.2.m.a 8 4
190.2.m.b 32
190.2.p \(\chi_{190}(9, \cdot)\) 190.2.p.a 60 6
190.2.r \(\chi_{190}(3, \cdot)\) 190.2.r.a 120 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(190))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(190)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(95))\)\(^{\oplus 2}\)