Properties

Label 19.4.c
Level $19$
Weight $4$
Character orbit 19.c
Rep. character $\chi_{19}(7,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $8$
Newform subspaces $2$
Sturm bound $6$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 19.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(6\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(19, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 8 8 0
Eisenstein series 4 4 0

Trace form

\( 8 q - 3 q^{2} - 2 q^{3} - 7 q^{4} - 5 q^{5} - q^{6} + 12 q^{7} + 18 q^{8} - 4 q^{9} - 32 q^{10} - 10 q^{11} + 42 q^{12} - 73 q^{13} - 142 q^{14} + 91 q^{15} - 43 q^{16} + 187 q^{17} + 60 q^{18} - 139 q^{19}+ \cdots - 1642 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(19, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
19.4.c.a 19.c 19.c $4$ $1.121$ \(\Q(\sqrt{-3}, \sqrt{55})\) None 19.4.c.a \(-2\) \(0\) \(14\) \(-28\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{2}+(\beta _{1}+\beta _{3})q^{3}+(7+7\beta _{2})q^{4}+\cdots\)
19.4.c.b 19.c 19.c $4$ $1.121$ \(\Q(\sqrt{-3}, \sqrt{73})\) None 19.4.c.b \(-1\) \(-2\) \(-19\) \(40\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}-\beta _{2}q^{3}+(-11+\beta _{1}+10\beta _{2}+\cdots)q^{4}+\cdots\)