Properties

Label 19.4.a.b.1.2
Level $19$
Weight $4$
Character 19.1
Self dual yes
Analytic conductor $1.121$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [19,4,Mod(1,19)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("19.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(19, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 19.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.12103629011\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.3144.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.73549\) of defining polynomial
Character \(\chi\) \(=\) 19.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.89080 q^{2} +2.95388 q^{3} -4.42486 q^{4} -1.51710 q^{5} +5.58521 q^{6} +5.94196 q^{7} -23.4930 q^{8} -18.2746 q^{9} -2.86853 q^{10} +11.5171 q^{11} -13.0705 q^{12} +22.6093 q^{13} +11.2351 q^{14} -4.48133 q^{15} -9.02172 q^{16} +120.560 q^{17} -34.5537 q^{18} -19.0000 q^{19} +6.71294 q^{20} +17.5518 q^{21} +21.7766 q^{22} +63.9160 q^{23} -69.3955 q^{24} -122.698 q^{25} +42.7498 q^{26} -133.736 q^{27} -26.2923 q^{28} -89.7278 q^{29} -8.47331 q^{30} -251.051 q^{31} +170.885 q^{32} +34.0201 q^{33} +227.954 q^{34} -9.01453 q^{35} +80.8625 q^{36} +198.702 q^{37} -35.9253 q^{38} +66.7853 q^{39} +35.6411 q^{40} +373.170 q^{41} +33.1871 q^{42} -448.586 q^{43} -50.9616 q^{44} +27.7243 q^{45} +120.853 q^{46} -186.475 q^{47} -26.6491 q^{48} -307.693 q^{49} -231.999 q^{50} +356.119 q^{51} -100.043 q^{52} +364.882 q^{53} -252.868 q^{54} -17.4726 q^{55} -139.594 q^{56} -56.1238 q^{57} -169.658 q^{58} -376.730 q^{59} +19.8292 q^{60} +816.832 q^{61} -474.689 q^{62} -108.587 q^{63} +395.285 q^{64} -34.3006 q^{65} +64.3254 q^{66} +220.185 q^{67} -533.459 q^{68} +188.800 q^{69} -17.0447 q^{70} +383.466 q^{71} +429.324 q^{72} -537.689 q^{73} +375.706 q^{74} -362.437 q^{75} +84.0724 q^{76} +68.4341 q^{77} +126.278 q^{78} +1062.27 q^{79} +13.6868 q^{80} +98.3741 q^{81} +705.592 q^{82} -616.932 q^{83} -77.6645 q^{84} -182.900 q^{85} -848.189 q^{86} -265.045 q^{87} -270.571 q^{88} -90.2686 q^{89} +52.4212 q^{90} +134.344 q^{91} -282.819 q^{92} -741.576 q^{93} -352.589 q^{94} +28.8248 q^{95} +504.776 q^{96} -524.636 q^{97} -581.787 q^{98} -210.470 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + q^{3} + 21 q^{4} + 14 q^{5} - 65 q^{6} - 35 q^{7} + 27 q^{8} + 48 q^{9} - 88 q^{10} + 16 q^{11} - 115 q^{12} + 65 q^{13} + 37 q^{14} + 140 q^{15} + 33 q^{16} + 29 q^{17} + 138 q^{18} - 57 q^{19}+ \cdots + 250 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.89080 0.668500 0.334250 0.942484i \(-0.391517\pi\)
0.334250 + 0.942484i \(0.391517\pi\)
\(3\) 2.95388 0.568475 0.284237 0.958754i \(-0.408260\pi\)
0.284237 + 0.958754i \(0.408260\pi\)
\(4\) −4.42486 −0.553108
\(5\) −1.51710 −0.135693 −0.0678466 0.997696i \(-0.521613\pi\)
−0.0678466 + 0.997696i \(0.521613\pi\)
\(6\) 5.58521 0.380025
\(7\) 5.94196 0.320836 0.160418 0.987049i \(-0.448716\pi\)
0.160418 + 0.987049i \(0.448716\pi\)
\(8\) −23.4930 −1.03825
\(9\) −18.2746 −0.676836
\(10\) −2.86853 −0.0907110
\(11\) 11.5171 0.315685 0.157843 0.987464i \(-0.449546\pi\)
0.157843 + 0.987464i \(0.449546\pi\)
\(12\) −13.0705 −0.314428
\(13\) 22.6093 0.482362 0.241181 0.970480i \(-0.422465\pi\)
0.241181 + 0.970480i \(0.422465\pi\)
\(14\) 11.2351 0.214479
\(15\) −4.48133 −0.0771382
\(16\) −9.02172 −0.140964
\(17\) 120.560 1.72000 0.859999 0.510295i \(-0.170464\pi\)
0.859999 + 0.510295i \(0.170464\pi\)
\(18\) −34.5537 −0.452465
\(19\) −19.0000 −0.229416
\(20\) 6.71294 0.0750530
\(21\) 17.5518 0.182387
\(22\) 21.7766 0.211035
\(23\) 63.9160 0.579452 0.289726 0.957110i \(-0.406436\pi\)
0.289726 + 0.957110i \(0.406436\pi\)
\(24\) −69.3955 −0.590220
\(25\) −122.698 −0.981587
\(26\) 42.7498 0.322459
\(27\) −133.736 −0.953239
\(28\) −26.2923 −0.177457
\(29\) −89.7278 −0.574553 −0.287276 0.957848i \(-0.592750\pi\)
−0.287276 + 0.957848i \(0.592750\pi\)
\(30\) −8.47331 −0.0515669
\(31\) −251.051 −1.45452 −0.727260 0.686362i \(-0.759207\pi\)
−0.727260 + 0.686362i \(0.759207\pi\)
\(32\) 170.885 0.944018
\(33\) 34.0201 0.179459
\(34\) 227.954 1.14982
\(35\) −9.01453 −0.0435352
\(36\) 80.8625 0.374363
\(37\) 198.702 0.882875 0.441438 0.897292i \(-0.354469\pi\)
0.441438 + 0.897292i \(0.354469\pi\)
\(38\) −35.9253 −0.153364
\(39\) 66.7853 0.274210
\(40\) 35.6411 0.140884
\(41\) 373.170 1.42145 0.710725 0.703470i \(-0.248367\pi\)
0.710725 + 0.703470i \(0.248367\pi\)
\(42\) 33.1871 0.121926
\(43\) −448.586 −1.59090 −0.795451 0.606018i \(-0.792766\pi\)
−0.795451 + 0.606018i \(0.792766\pi\)
\(44\) −50.9616 −0.174608
\(45\) 27.7243 0.0918422
\(46\) 120.853 0.387364
\(47\) −186.475 −0.578729 −0.289364 0.957219i \(-0.593444\pi\)
−0.289364 + 0.957219i \(0.593444\pi\)
\(48\) −26.6491 −0.0801347
\(49\) −307.693 −0.897065
\(50\) −231.999 −0.656191
\(51\) 356.119 0.977776
\(52\) −100.043 −0.266798
\(53\) 364.882 0.945669 0.472834 0.881151i \(-0.343231\pi\)
0.472834 + 0.881151i \(0.343231\pi\)
\(54\) −252.868 −0.637241
\(55\) −17.4726 −0.0428363
\(56\) −139.594 −0.333108
\(57\) −56.1238 −0.130417
\(58\) −169.658 −0.384089
\(59\) −376.730 −0.831290 −0.415645 0.909527i \(-0.636444\pi\)
−0.415645 + 0.909527i \(0.636444\pi\)
\(60\) 19.8292 0.0426657
\(61\) 816.832 1.71450 0.857251 0.514899i \(-0.172171\pi\)
0.857251 + 0.514899i \(0.172171\pi\)
\(62\) −474.689 −0.972347
\(63\) −108.587 −0.217153
\(64\) 395.285 0.772040
\(65\) −34.3006 −0.0654532
\(66\) 64.3254 0.119968
\(67\) 220.185 0.401490 0.200745 0.979644i \(-0.435664\pi\)
0.200745 + 0.979644i \(0.435664\pi\)
\(68\) −533.459 −0.951344
\(69\) 188.800 0.329404
\(70\) −17.0447 −0.0291033
\(71\) 383.466 0.640973 0.320486 0.947253i \(-0.396154\pi\)
0.320486 + 0.947253i \(0.396154\pi\)
\(72\) 429.324 0.702727
\(73\) −537.689 −0.862078 −0.431039 0.902333i \(-0.641853\pi\)
−0.431039 + 0.902333i \(0.641853\pi\)
\(74\) 375.706 0.590202
\(75\) −362.437 −0.558008
\(76\) 84.0724 0.126892
\(77\) 68.4341 0.101283
\(78\) 126.278 0.183310
\(79\) 1062.27 1.51284 0.756421 0.654085i \(-0.226946\pi\)
0.756421 + 0.654085i \(0.226946\pi\)
\(80\) 13.6868 0.0191279
\(81\) 98.3741 0.134944
\(82\) 705.592 0.950239
\(83\) −616.932 −0.815869 −0.407935 0.913011i \(-0.633751\pi\)
−0.407935 + 0.913011i \(0.633751\pi\)
\(84\) −77.6645 −0.100880
\(85\) −182.900 −0.233392
\(86\) −848.189 −1.06352
\(87\) −265.045 −0.326619
\(88\) −270.571 −0.327761
\(89\) −90.2686 −0.107511 −0.0537554 0.998554i \(-0.517119\pi\)
−0.0537554 + 0.998554i \(0.517119\pi\)
\(90\) 52.4212 0.0613965
\(91\) 134.344 0.154759
\(92\) −282.819 −0.320499
\(93\) −741.576 −0.826858
\(94\) −352.589 −0.386880
\(95\) 28.8248 0.0311302
\(96\) 504.776 0.536650
\(97\) −524.636 −0.549162 −0.274581 0.961564i \(-0.588539\pi\)
−0.274581 + 0.961564i \(0.588539\pi\)
\(98\) −581.787 −0.599688
\(99\) −210.470 −0.213667
\(100\) 542.923 0.542923
\(101\) −336.523 −0.331538 −0.165769 0.986165i \(-0.553011\pi\)
−0.165769 + 0.986165i \(0.553011\pi\)
\(102\) 673.350 0.653643
\(103\) −718.709 −0.687539 −0.343770 0.939054i \(-0.611704\pi\)
−0.343770 + 0.939054i \(0.611704\pi\)
\(104\) −531.161 −0.500813
\(105\) −26.6278 −0.0247487
\(106\) 689.921 0.632180
\(107\) 1321.73 1.19417 0.597087 0.802177i \(-0.296325\pi\)
0.597087 + 0.802177i \(0.296325\pi\)
\(108\) 591.762 0.527244
\(109\) 472.039 0.414799 0.207400 0.978256i \(-0.433500\pi\)
0.207400 + 0.978256i \(0.433500\pi\)
\(110\) −33.0372 −0.0286361
\(111\) 586.942 0.501892
\(112\) −53.6067 −0.0452264
\(113\) 442.672 0.368523 0.184261 0.982877i \(-0.441011\pi\)
0.184261 + 0.982877i \(0.441011\pi\)
\(114\) −106.119 −0.0871838
\(115\) −96.9668 −0.0786278
\(116\) 397.033 0.317790
\(117\) −413.176 −0.326480
\(118\) −712.323 −0.555717
\(119\) 716.360 0.551837
\(120\) 105.280 0.0800890
\(121\) −1198.36 −0.900343
\(122\) 1544.47 1.14614
\(123\) 1102.30 0.808058
\(124\) 1110.87 0.804506
\(125\) 375.783 0.268888
\(126\) −205.316 −0.145167
\(127\) −1482.52 −1.03585 −0.517923 0.855427i \(-0.673295\pi\)
−0.517923 + 0.855427i \(0.673295\pi\)
\(128\) −619.678 −0.427909
\(129\) −1325.07 −0.904387
\(130\) −64.8556 −0.0437555
\(131\) 785.710 0.524029 0.262015 0.965064i \(-0.415613\pi\)
0.262015 + 0.965064i \(0.415613\pi\)
\(132\) −150.534 −0.0992601
\(133\) −112.897 −0.0736047
\(134\) 416.326 0.268396
\(135\) 202.890 0.129348
\(136\) −2832.30 −1.78579
\(137\) −1423.76 −0.887886 −0.443943 0.896055i \(-0.646421\pi\)
−0.443943 + 0.896055i \(0.646421\pi\)
\(138\) 356.984 0.220207
\(139\) −1416.42 −0.864311 −0.432155 0.901799i \(-0.642247\pi\)
−0.432155 + 0.901799i \(0.642247\pi\)
\(140\) 39.8880 0.0240797
\(141\) −550.827 −0.328993
\(142\) 725.059 0.428490
\(143\) 260.394 0.152274
\(144\) 164.868 0.0954098
\(145\) 136.126 0.0779630
\(146\) −1016.66 −0.576299
\(147\) −908.889 −0.509959
\(148\) −879.228 −0.488325
\(149\) 3342.97 1.83803 0.919016 0.394221i \(-0.128986\pi\)
0.919016 + 0.394221i \(0.128986\pi\)
\(150\) −685.297 −0.373028
\(151\) 2233.19 1.20354 0.601769 0.798670i \(-0.294463\pi\)
0.601769 + 0.798670i \(0.294463\pi\)
\(152\) 446.367 0.238191
\(153\) −2203.17 −1.16416
\(154\) 129.395 0.0677077
\(155\) 380.869 0.197369
\(156\) −295.516 −0.151668
\(157\) 1748.03 0.888588 0.444294 0.895881i \(-0.353455\pi\)
0.444294 + 0.895881i \(0.353455\pi\)
\(158\) 2008.54 1.01134
\(159\) 1077.82 0.537589
\(160\) −259.250 −0.128097
\(161\) 379.786 0.185909
\(162\) 186.006 0.0902100
\(163\) 3442.43 1.65418 0.827092 0.562067i \(-0.189994\pi\)
0.827092 + 0.562067i \(0.189994\pi\)
\(164\) −1651.23 −0.786215
\(165\) −51.6119 −0.0243514
\(166\) −1166.50 −0.545409
\(167\) −3440.98 −1.59444 −0.797218 0.603692i \(-0.793696\pi\)
−0.797218 + 0.603692i \(0.793696\pi\)
\(168\) −412.345 −0.189364
\(169\) −1685.82 −0.767327
\(170\) −345.829 −0.156023
\(171\) 347.217 0.155277
\(172\) 1984.93 0.879940
\(173\) 3159.81 1.38865 0.694324 0.719663i \(-0.255704\pi\)
0.694324 + 0.719663i \(0.255704\pi\)
\(174\) −501.149 −0.218345
\(175\) −729.069 −0.314928
\(176\) −103.904 −0.0445003
\(177\) −1112.82 −0.472567
\(178\) −170.680 −0.0718709
\(179\) 2056.18 0.858580 0.429290 0.903167i \(-0.358764\pi\)
0.429290 + 0.903167i \(0.358764\pi\)
\(180\) −122.676 −0.0507986
\(181\) −123.527 −0.0507277 −0.0253638 0.999678i \(-0.508074\pi\)
−0.0253638 + 0.999678i \(0.508074\pi\)
\(182\) 254.018 0.103456
\(183\) 2412.82 0.974651
\(184\) −1501.58 −0.601618
\(185\) −301.450 −0.119800
\(186\) −1402.17 −0.552755
\(187\) 1388.50 0.542978
\(188\) 825.128 0.320099
\(189\) −794.652 −0.305833
\(190\) 54.5021 0.0208105
\(191\) −3379.82 −1.28039 −0.640197 0.768210i \(-0.721147\pi\)
−0.640197 + 0.768210i \(0.721147\pi\)
\(192\) 1167.62 0.438886
\(193\) −386.034 −0.143976 −0.0719880 0.997405i \(-0.522934\pi\)
−0.0719880 + 0.997405i \(0.522934\pi\)
\(194\) −991.983 −0.367115
\(195\) −101.320 −0.0372085
\(196\) 1361.50 0.496173
\(197\) −3242.43 −1.17266 −0.586328 0.810073i \(-0.699427\pi\)
−0.586328 + 0.810073i \(0.699427\pi\)
\(198\) −397.958 −0.142836
\(199\) −752.507 −0.268059 −0.134030 0.990977i \(-0.542792\pi\)
−0.134030 + 0.990977i \(0.542792\pi\)
\(200\) 2882.55 1.01914
\(201\) 650.400 0.228237
\(202\) −636.300 −0.221633
\(203\) −533.159 −0.184337
\(204\) −1575.77 −0.540815
\(205\) −566.136 −0.192881
\(206\) −1358.94 −0.459620
\(207\) −1168.04 −0.392194
\(208\) −203.975 −0.0679958
\(209\) −218.825 −0.0724231
\(210\) −50.3480 −0.0165445
\(211\) −3996.39 −1.30390 −0.651949 0.758263i \(-0.726048\pi\)
−0.651949 + 0.758263i \(0.726048\pi\)
\(212\) −1614.55 −0.523057
\(213\) 1132.71 0.364377
\(214\) 2499.13 0.798305
\(215\) 680.549 0.215875
\(216\) 3141.85 0.989703
\(217\) −1491.74 −0.466662
\(218\) 892.533 0.277293
\(219\) −1588.27 −0.490070
\(220\) 77.3136 0.0236931
\(221\) 2725.77 0.829661
\(222\) 1109.79 0.335515
\(223\) 5465.82 1.64134 0.820669 0.571404i \(-0.193601\pi\)
0.820669 + 0.571404i \(0.193601\pi\)
\(224\) 1015.39 0.302875
\(225\) 2242.26 0.664374
\(226\) 837.006 0.246358
\(227\) −1866.81 −0.545836 −0.272918 0.962037i \(-0.587989\pi\)
−0.272918 + 0.962037i \(0.587989\pi\)
\(228\) 248.340 0.0721347
\(229\) 456.437 0.131713 0.0658563 0.997829i \(-0.479022\pi\)
0.0658563 + 0.997829i \(0.479022\pi\)
\(230\) −183.345 −0.0525627
\(231\) 202.146 0.0575768
\(232\) 2107.97 0.596531
\(233\) −1268.44 −0.356645 −0.178323 0.983972i \(-0.557067\pi\)
−0.178323 + 0.983972i \(0.557067\pi\)
\(234\) −781.235 −0.218252
\(235\) 282.901 0.0785296
\(236\) 1666.98 0.459793
\(237\) 3137.82 0.860013
\(238\) 1354.50 0.368903
\(239\) −5115.26 −1.38443 −0.692214 0.721692i \(-0.743365\pi\)
−0.692214 + 0.721692i \(0.743365\pi\)
\(240\) 40.4293 0.0108737
\(241\) −1509.15 −0.403372 −0.201686 0.979450i \(-0.564642\pi\)
−0.201686 + 0.979450i \(0.564642\pi\)
\(242\) −2265.86 −0.601879
\(243\) 3901.45 1.02995
\(244\) −3614.37 −0.948304
\(245\) 466.800 0.121726
\(246\) 2084.24 0.540187
\(247\) −429.577 −0.110661
\(248\) 5897.94 1.51016
\(249\) −1822.35 −0.463801
\(250\) 710.531 0.179752
\(251\) −4695.51 −1.18079 −0.590394 0.807115i \(-0.701028\pi\)
−0.590394 + 0.807115i \(0.701028\pi\)
\(252\) 480.481 0.120109
\(253\) 736.127 0.182924
\(254\) −2803.16 −0.692464
\(255\) −540.266 −0.132678
\(256\) −4333.97 −1.05810
\(257\) −6383.64 −1.54942 −0.774710 0.632317i \(-0.782104\pi\)
−0.774710 + 0.632317i \(0.782104\pi\)
\(258\) −2505.45 −0.604583
\(259\) 1180.68 0.283258
\(260\) 151.775 0.0362027
\(261\) 1639.74 0.388878
\(262\) 1485.62 0.350314
\(263\) −3805.82 −0.892308 −0.446154 0.894956i \(-0.647207\pi\)
−0.446154 + 0.894956i \(0.647207\pi\)
\(264\) −799.234 −0.186324
\(265\) −553.562 −0.128321
\(266\) −213.466 −0.0492048
\(267\) −266.643 −0.0611171
\(268\) −974.287 −0.222067
\(269\) 6390.72 1.44851 0.724255 0.689533i \(-0.242184\pi\)
0.724255 + 0.689533i \(0.242184\pi\)
\(270\) 383.625 0.0864693
\(271\) −2526.33 −0.566286 −0.283143 0.959078i \(-0.591377\pi\)
−0.283143 + 0.959078i \(0.591377\pi\)
\(272\) −1087.65 −0.242459
\(273\) 396.835 0.0879765
\(274\) −2692.06 −0.593552
\(275\) −1413.13 −0.309872
\(276\) −835.415 −0.182196
\(277\) 3156.63 0.684706 0.342353 0.939571i \(-0.388776\pi\)
0.342353 + 0.939571i \(0.388776\pi\)
\(278\) −2678.17 −0.577792
\(279\) 4587.86 0.984472
\(280\) 211.778 0.0452006
\(281\) 8144.80 1.72910 0.864552 0.502544i \(-0.167602\pi\)
0.864552 + 0.502544i \(0.167602\pi\)
\(282\) −1041.50 −0.219932
\(283\) −3378.88 −0.709729 −0.354865 0.934918i \(-0.615473\pi\)
−0.354865 + 0.934918i \(0.615473\pi\)
\(284\) −1696.78 −0.354527
\(285\) 85.1452 0.0176967
\(286\) 492.354 0.101795
\(287\) 2217.36 0.456052
\(288\) −3122.86 −0.638946
\(289\) 9621.60 1.95840
\(290\) 257.387 0.0521183
\(291\) −1549.71 −0.312185
\(292\) 2379.20 0.476822
\(293\) 3191.30 0.636307 0.318154 0.948039i \(-0.396937\pi\)
0.318154 + 0.948039i \(0.396937\pi\)
\(294\) −1718.53 −0.340907
\(295\) 571.536 0.112800
\(296\) −4668.10 −0.916647
\(297\) −1540.25 −0.300923
\(298\) 6320.90 1.22872
\(299\) 1445.10 0.279506
\(300\) 1603.73 0.308638
\(301\) −2665.48 −0.510418
\(302\) 4222.52 0.804566
\(303\) −994.050 −0.188471
\(304\) 171.413 0.0323394
\(305\) −1239.21 −0.232646
\(306\) −4165.77 −0.778240
\(307\) 4313.64 0.801931 0.400965 0.916093i \(-0.368675\pi\)
0.400965 + 0.916093i \(0.368675\pi\)
\(308\) −302.811 −0.0560204
\(309\) −2122.98 −0.390849
\(310\) 720.149 0.131941
\(311\) −296.966 −0.0541459 −0.0270730 0.999633i \(-0.508619\pi\)
−0.0270730 + 0.999633i \(0.508619\pi\)
\(312\) −1568.99 −0.284700
\(313\) −74.6344 −0.0134779 −0.00673895 0.999977i \(-0.502145\pi\)
−0.00673895 + 0.999977i \(0.502145\pi\)
\(314\) 3305.19 0.594021
\(315\) 164.737 0.0294662
\(316\) −4700.39 −0.836764
\(317\) −634.636 −0.112444 −0.0562220 0.998418i \(-0.517905\pi\)
−0.0562220 + 0.998418i \(0.517905\pi\)
\(318\) 2037.94 0.359378
\(319\) −1033.40 −0.181378
\(320\) −599.685 −0.104761
\(321\) 3904.24 0.678858
\(322\) 718.101 0.124280
\(323\) −2290.63 −0.394595
\(324\) −435.292 −0.0746385
\(325\) −2774.13 −0.473480
\(326\) 6508.96 1.10582
\(327\) 1394.35 0.235803
\(328\) −8766.88 −1.47582
\(329\) −1108.03 −0.185677
\(330\) −97.5879 −0.0162789
\(331\) −1010.00 −0.167718 −0.0838588 0.996478i \(-0.526724\pi\)
−0.0838588 + 0.996478i \(0.526724\pi\)
\(332\) 2729.84 0.451263
\(333\) −3631.19 −0.597562
\(334\) −6506.21 −1.06588
\(335\) −334.042 −0.0544795
\(336\) −158.348 −0.0257101
\(337\) −3136.03 −0.506916 −0.253458 0.967346i \(-0.581568\pi\)
−0.253458 + 0.967346i \(0.581568\pi\)
\(338\) −3187.55 −0.512958
\(339\) 1307.60 0.209496
\(340\) 809.309 0.129091
\(341\) −2891.38 −0.459170
\(342\) 656.519 0.103803
\(343\) −3866.39 −0.608646
\(344\) 10538.6 1.65176
\(345\) −286.428 −0.0446979
\(346\) 5974.58 0.928311
\(347\) −11450.8 −1.77150 −0.885749 0.464164i \(-0.846355\pi\)
−0.885749 + 0.464164i \(0.846355\pi\)
\(348\) 1172.79 0.180655
\(349\) 4403.78 0.675442 0.337721 0.941246i \(-0.390344\pi\)
0.337721 + 0.941246i \(0.390344\pi\)
\(350\) −1378.53 −0.210529
\(351\) −3023.68 −0.459806
\(352\) 1968.10 0.298012
\(353\) 601.300 0.0906629 0.0453314 0.998972i \(-0.485566\pi\)
0.0453314 + 0.998972i \(0.485566\pi\)
\(354\) −2104.12 −0.315911
\(355\) −581.755 −0.0869757
\(356\) 399.426 0.0594650
\(357\) 2116.04 0.313705
\(358\) 3887.83 0.573961
\(359\) 7924.45 1.16500 0.582502 0.812829i \(-0.302074\pi\)
0.582502 + 0.812829i \(0.302074\pi\)
\(360\) −651.327 −0.0953554
\(361\) 361.000 0.0526316
\(362\) −233.566 −0.0339115
\(363\) −3539.80 −0.511822
\(364\) −594.452 −0.0855982
\(365\) 815.726 0.116978
\(366\) 4562.18 0.651554
\(367\) −2232.61 −0.317552 −0.158776 0.987315i \(-0.550755\pi\)
−0.158776 + 0.987315i \(0.550755\pi\)
\(368\) −576.632 −0.0816821
\(369\) −6819.53 −0.962089
\(370\) −569.983 −0.0800865
\(371\) 2168.12 0.303404
\(372\) 3281.37 0.457341
\(373\) −9994.88 −1.38744 −0.693720 0.720245i \(-0.744030\pi\)
−0.693720 + 0.720245i \(0.744030\pi\)
\(374\) 2625.37 0.362981
\(375\) 1110.02 0.152856
\(376\) 4380.86 0.600867
\(377\) −2028.69 −0.277142
\(378\) −1502.53 −0.204449
\(379\) 13486.3 1.82782 0.913912 0.405913i \(-0.133046\pi\)
0.913912 + 0.405913i \(0.133046\pi\)
\(380\) −127.546 −0.0172183
\(381\) −4379.19 −0.588853
\(382\) −6390.58 −0.855944
\(383\) 5181.58 0.691296 0.345648 0.938364i \(-0.387659\pi\)
0.345648 + 0.938364i \(0.387659\pi\)
\(384\) −1830.46 −0.243255
\(385\) −103.821 −0.0137434
\(386\) −729.915 −0.0962480
\(387\) 8197.73 1.07678
\(388\) 2321.44 0.303745
\(389\) −371.727 −0.0484507 −0.0242253 0.999707i \(-0.507712\pi\)
−0.0242253 + 0.999707i \(0.507712\pi\)
\(390\) −191.576 −0.0248739
\(391\) 7705.68 0.996657
\(392\) 7228.63 0.931380
\(393\) 2320.90 0.297897
\(394\) −6130.79 −0.783921
\(395\) −1611.56 −0.205283
\(396\) 931.301 0.118181
\(397\) −4571.57 −0.577936 −0.288968 0.957339i \(-0.593312\pi\)
−0.288968 + 0.957339i \(0.593312\pi\)
\(398\) −1422.84 −0.179198
\(399\) −333.485 −0.0418424
\(400\) 1106.95 0.138369
\(401\) 13606.8 1.69449 0.847245 0.531203i \(-0.178260\pi\)
0.847245 + 0.531203i \(0.178260\pi\)
\(402\) 1229.78 0.152577
\(403\) −5676.10 −0.701605
\(404\) 1489.07 0.183376
\(405\) −149.243 −0.0183110
\(406\) −1008.10 −0.123229
\(407\) 2288.47 0.278710
\(408\) −8366.28 −1.01518
\(409\) −3182.34 −0.384735 −0.192368 0.981323i \(-0.561617\pi\)
−0.192368 + 0.981323i \(0.561617\pi\)
\(410\) −1070.45 −0.128941
\(411\) −4205.63 −0.504741
\(412\) 3180.19 0.380283
\(413\) −2238.51 −0.266707
\(414\) −2208.53 −0.262182
\(415\) 935.947 0.110708
\(416\) 3863.61 0.455358
\(417\) −4183.94 −0.491339
\(418\) −413.755 −0.0484149
\(419\) 7452.18 0.868885 0.434442 0.900700i \(-0.356945\pi\)
0.434442 + 0.900700i \(0.356945\pi\)
\(420\) 117.825 0.0136887
\(421\) −9082.58 −1.05144 −0.525722 0.850656i \(-0.676205\pi\)
−0.525722 + 0.850656i \(0.676205\pi\)
\(422\) −7556.38 −0.871656
\(423\) 3407.76 0.391705
\(424\) −8572.17 −0.981843
\(425\) −14792.5 −1.68833
\(426\) 2141.74 0.243586
\(427\) 4853.58 0.550073
\(428\) −5848.48 −0.660507
\(429\) 769.173 0.0865641
\(430\) 1286.78 0.144312
\(431\) −10010.1 −1.11872 −0.559362 0.828923i \(-0.688954\pi\)
−0.559362 + 0.828923i \(0.688954\pi\)
\(432\) 1206.53 0.134373
\(433\) −8137.16 −0.903111 −0.451555 0.892243i \(-0.649131\pi\)
−0.451555 + 0.892243i \(0.649131\pi\)
\(434\) −2820.58 −0.311963
\(435\) 402.100 0.0443200
\(436\) −2088.71 −0.229429
\(437\) −1214.40 −0.132935
\(438\) −3003.10 −0.327612
\(439\) −5582.62 −0.606933 −0.303467 0.952842i \(-0.598144\pi\)
−0.303467 + 0.952842i \(0.598144\pi\)
\(440\) 410.482 0.0444749
\(441\) 5622.96 0.607166
\(442\) 5153.90 0.554629
\(443\) 5823.52 0.624568 0.312284 0.949989i \(-0.398906\pi\)
0.312284 + 0.949989i \(0.398906\pi\)
\(444\) −2597.14 −0.277600
\(445\) 136.946 0.0145885
\(446\) 10334.8 1.09723
\(447\) 9874.73 1.04487
\(448\) 2348.77 0.247698
\(449\) 3999.42 0.420366 0.210183 0.977662i \(-0.432594\pi\)
0.210183 + 0.977662i \(0.432594\pi\)
\(450\) 4239.68 0.444134
\(451\) 4297.84 0.448730
\(452\) −1958.76 −0.203833
\(453\) 6596.58 0.684182
\(454\) −3529.78 −0.364892
\(455\) −203.812 −0.0209997
\(456\) 1318.51 0.135406
\(457\) 10800.0 1.10548 0.552739 0.833354i \(-0.313583\pi\)
0.552739 + 0.833354i \(0.313583\pi\)
\(458\) 863.033 0.0880499
\(459\) −16123.1 −1.63957
\(460\) 429.064 0.0434896
\(461\) 11879.6 1.20019 0.600096 0.799928i \(-0.295129\pi\)
0.600096 + 0.799928i \(0.295129\pi\)
\(462\) 382.219 0.0384901
\(463\) 10252.9 1.02914 0.514569 0.857449i \(-0.327952\pi\)
0.514569 + 0.857449i \(0.327952\pi\)
\(464\) 809.499 0.0809915
\(465\) 1125.04 0.112199
\(466\) −2398.37 −0.238417
\(467\) −4190.63 −0.415245 −0.207622 0.978209i \(-0.566573\pi\)
−0.207622 + 0.978209i \(0.566573\pi\)
\(468\) 1828.25 0.180579
\(469\) 1308.33 0.128812
\(470\) 534.911 0.0524970
\(471\) 5163.48 0.505140
\(472\) 8850.51 0.863089
\(473\) −5166.41 −0.502224
\(474\) 5932.99 0.574919
\(475\) 2331.27 0.225192
\(476\) −3169.79 −0.305225
\(477\) −6668.07 −0.640063
\(478\) −9671.94 −0.925490
\(479\) −11777.5 −1.12344 −0.561721 0.827327i \(-0.689861\pi\)
−0.561721 + 0.827327i \(0.689861\pi\)
\(480\) −765.794 −0.0728199
\(481\) 4492.52 0.425865
\(482\) −2853.50 −0.269654
\(483\) 1121.84 0.105685
\(484\) 5302.56 0.497987
\(485\) 795.923 0.0745176
\(486\) 7376.88 0.688523
\(487\) 17288.2 1.60863 0.804315 0.594203i \(-0.202532\pi\)
0.804315 + 0.594203i \(0.202532\pi\)
\(488\) −19189.8 −1.78009
\(489\) 10168.5 0.940361
\(490\) 882.628 0.0813736
\(491\) −4426.69 −0.406872 −0.203436 0.979088i \(-0.565211\pi\)
−0.203436 + 0.979088i \(0.565211\pi\)
\(492\) −4877.53 −0.446943
\(493\) −10817.5 −0.988230
\(494\) −812.246 −0.0739771
\(495\) 319.304 0.0289932
\(496\) 2264.91 0.205036
\(497\) 2278.54 0.205647
\(498\) −3445.70 −0.310051
\(499\) 12876.9 1.15521 0.577606 0.816316i \(-0.303987\pi\)
0.577606 + 0.816316i \(0.303987\pi\)
\(500\) −1662.79 −0.148724
\(501\) −10164.2 −0.906396
\(502\) −8878.28 −0.789357
\(503\) −3852.90 −0.341535 −0.170768 0.985311i \(-0.554625\pi\)
−0.170768 + 0.985311i \(0.554625\pi\)
\(504\) 2551.03 0.225460
\(505\) 510.539 0.0449875
\(506\) 1391.87 0.122285
\(507\) −4979.71 −0.436206
\(508\) 6559.95 0.572935
\(509\) −20087.1 −1.74920 −0.874601 0.484844i \(-0.838876\pi\)
−0.874601 + 0.484844i \(0.838876\pi\)
\(510\) −1021.54 −0.0886950
\(511\) −3194.92 −0.276585
\(512\) −3237.26 −0.279430
\(513\) 2540.98 0.218688
\(514\) −12070.2 −1.03579
\(515\) 1090.35 0.0932945
\(516\) 5863.25 0.500224
\(517\) −2147.66 −0.182696
\(518\) 2232.43 0.189358
\(519\) 9333.71 0.789411
\(520\) 805.822 0.0679570
\(521\) 21715.8 1.82608 0.913038 0.407874i \(-0.133730\pi\)
0.913038 + 0.407874i \(0.133730\pi\)
\(522\) 3100.42 0.259965
\(523\) 3451.54 0.288576 0.144288 0.989536i \(-0.453911\pi\)
0.144288 + 0.989536i \(0.453911\pi\)
\(524\) −3476.66 −0.289845
\(525\) −2153.58 −0.179029
\(526\) −7196.06 −0.596508
\(527\) −30266.6 −2.50177
\(528\) −306.920 −0.0252973
\(529\) −8081.75 −0.664235
\(530\) −1046.68 −0.0857825
\(531\) 6884.59 0.562647
\(532\) 499.554 0.0407113
\(533\) 8437.13 0.685653
\(534\) −504.169 −0.0408568
\(535\) −2005.19 −0.162041
\(536\) −5172.79 −0.416848
\(537\) 6073.70 0.488081
\(538\) 12083.6 0.968329
\(539\) −3543.73 −0.283190
\(540\) −897.761 −0.0715435
\(541\) −5540.30 −0.440288 −0.220144 0.975467i \(-0.570653\pi\)
−0.220144 + 0.975467i \(0.570653\pi\)
\(542\) −4776.79 −0.378562
\(543\) −364.885 −0.0288374
\(544\) 20601.9 1.62371
\(545\) −716.129 −0.0562855
\(546\) 750.338 0.0588123
\(547\) −463.137 −0.0362016 −0.0181008 0.999836i \(-0.505762\pi\)
−0.0181008 + 0.999836i \(0.505762\pi\)
\(548\) 6299.96 0.491096
\(549\) −14927.3 −1.16044
\(550\) −2671.95 −0.207150
\(551\) 1704.83 0.131811
\(552\) −4435.48 −0.342005
\(553\) 6311.95 0.485374
\(554\) 5968.57 0.457726
\(555\) −890.448 −0.0681034
\(556\) 6267.46 0.478057
\(557\) 2283.84 0.173733 0.0868667 0.996220i \(-0.472315\pi\)
0.0868667 + 0.996220i \(0.472315\pi\)
\(558\) 8674.73 0.658120
\(559\) −10142.2 −0.767390
\(560\) 81.3266 0.00613692
\(561\) 4101.45 0.308669
\(562\) 15400.2 1.15591
\(563\) 12065.7 0.903211 0.451606 0.892218i \(-0.350851\pi\)
0.451606 + 0.892218i \(0.350851\pi\)
\(564\) 2437.33 0.181968
\(565\) −671.577 −0.0500061
\(566\) −6388.79 −0.474454
\(567\) 584.535 0.0432948
\(568\) −9008.76 −0.665492
\(569\) 4496.79 0.331309 0.165655 0.986184i \(-0.447026\pi\)
0.165655 + 0.986184i \(0.447026\pi\)
\(570\) 160.993 0.0118303
\(571\) −8884.67 −0.651159 −0.325580 0.945515i \(-0.605559\pi\)
−0.325580 + 0.945515i \(0.605559\pi\)
\(572\) −1152.21 −0.0842241
\(573\) −9983.60 −0.727872
\(574\) 4192.60 0.304871
\(575\) −7842.39 −0.568783
\(576\) −7223.66 −0.522545
\(577\) 8760.77 0.632089 0.316045 0.948744i \(-0.397645\pi\)
0.316045 + 0.948744i \(0.397645\pi\)
\(578\) 18192.6 1.30919
\(579\) −1140.30 −0.0818467
\(580\) −602.338 −0.0431219
\(581\) −3665.79 −0.261760
\(582\) −2930.20 −0.208695
\(583\) 4202.39 0.298533
\(584\) 12631.9 0.895055
\(585\) 626.828 0.0443011
\(586\) 6034.13 0.425371
\(587\) 4691.92 0.329909 0.164954 0.986301i \(-0.447252\pi\)
0.164954 + 0.986301i \(0.447252\pi\)
\(588\) 4021.71 0.282062
\(589\) 4769.97 0.333690
\(590\) 1080.66 0.0754071
\(591\) −9577.75 −0.666626
\(592\) −1792.63 −0.124454
\(593\) 9399.23 0.650894 0.325447 0.945560i \(-0.394485\pi\)
0.325447 + 0.945560i \(0.394485\pi\)
\(594\) −2912.31 −0.201167
\(595\) −1086.79 −0.0748805
\(596\) −14792.2 −1.01663
\(597\) −2222.82 −0.152385
\(598\) 2732.40 0.186850
\(599\) 15981.9 1.09016 0.545078 0.838386i \(-0.316500\pi\)
0.545078 + 0.838386i \(0.316500\pi\)
\(600\) 8514.71 0.579353
\(601\) −24969.1 −1.69470 −0.847348 0.531038i \(-0.821802\pi\)
−0.847348 + 0.531038i \(0.821802\pi\)
\(602\) −5039.90 −0.341214
\(603\) −4023.78 −0.271743
\(604\) −9881.55 −0.665687
\(605\) 1818.02 0.122171
\(606\) −1879.55 −0.125993
\(607\) −12651.2 −0.845956 −0.422978 0.906140i \(-0.639015\pi\)
−0.422978 + 0.906140i \(0.639015\pi\)
\(608\) −3246.82 −0.216573
\(609\) −1574.89 −0.104791
\(610\) −2343.11 −0.155524
\(611\) −4216.09 −0.279156
\(612\) 9748.74 0.643904
\(613\) 11851.0 0.780847 0.390424 0.920635i \(-0.372329\pi\)
0.390424 + 0.920635i \(0.372329\pi\)
\(614\) 8156.26 0.536091
\(615\) −1672.30 −0.109648
\(616\) −1607.72 −0.105157
\(617\) 19473.2 1.27060 0.635301 0.772265i \(-0.280876\pi\)
0.635301 + 0.772265i \(0.280876\pi\)
\(618\) −4014.14 −0.261282
\(619\) −25664.7 −1.66648 −0.833240 0.552912i \(-0.813517\pi\)
−0.833240 + 0.552912i \(0.813517\pi\)
\(620\) −1685.29 −0.109166
\(621\) −8547.85 −0.552357
\(622\) −561.504 −0.0361966
\(623\) −536.372 −0.0344933
\(624\) −602.518 −0.0386539
\(625\) 14767.2 0.945101
\(626\) −141.119 −0.00900998
\(627\) −646.383 −0.0411707
\(628\) −7734.80 −0.491485
\(629\) 23955.4 1.51854
\(630\) 311.485 0.0196982
\(631\) −19618.1 −1.23769 −0.618846 0.785512i \(-0.712399\pi\)
−0.618846 + 0.785512i \(0.712399\pi\)
\(632\) −24955.8 −1.57071
\(633\) −11804.8 −0.741233
\(634\) −1199.97 −0.0751688
\(635\) 2249.13 0.140557
\(636\) −4769.20 −0.297344
\(637\) −6956.74 −0.432709
\(638\) −1953.96 −0.121251
\(639\) −7007.68 −0.433834
\(640\) 940.112 0.0580644
\(641\) −683.277 −0.0421027 −0.0210513 0.999778i \(-0.506701\pi\)
−0.0210513 + 0.999778i \(0.506701\pi\)
\(642\) 7382.15 0.453816
\(643\) 7107.06 0.435886 0.217943 0.975961i \(-0.430065\pi\)
0.217943 + 0.975961i \(0.430065\pi\)
\(644\) −1680.50 −0.102828
\(645\) 2010.26 0.122719
\(646\) −4331.13 −0.263787
\(647\) 23626.1 1.43561 0.717805 0.696244i \(-0.245147\pi\)
0.717805 + 0.696244i \(0.245147\pi\)
\(648\) −2311.10 −0.140106
\(649\) −4338.84 −0.262426
\(650\) −5245.33 −0.316521
\(651\) −4406.41 −0.265285
\(652\) −15232.3 −0.914941
\(653\) 1155.57 0.0692508 0.0346254 0.999400i \(-0.488976\pi\)
0.0346254 + 0.999400i \(0.488976\pi\)
\(654\) 2636.44 0.157634
\(655\) −1192.00 −0.0711073
\(656\) −3366.64 −0.200374
\(657\) 9826.04 0.583486
\(658\) −2095.07 −0.124125
\(659\) 10881.9 0.643246 0.321623 0.946868i \(-0.395772\pi\)
0.321623 + 0.946868i \(0.395772\pi\)
\(660\) 228.375 0.0134689
\(661\) 18028.3 1.06085 0.530425 0.847732i \(-0.322032\pi\)
0.530425 + 0.847732i \(0.322032\pi\)
\(662\) −1909.71 −0.112119
\(663\) 8051.60 0.471642
\(664\) 14493.6 0.847078
\(665\) 171.276 0.00998767
\(666\) −6865.87 −0.399470
\(667\) −5735.04 −0.332926
\(668\) 15225.8 0.881894
\(669\) 16145.4 0.933059
\(670\) −631.607 −0.0364196
\(671\) 9407.53 0.541242
\(672\) 2999.36 0.172177
\(673\) −8571.78 −0.490963 −0.245481 0.969401i \(-0.578946\pi\)
−0.245481 + 0.969401i \(0.578946\pi\)
\(674\) −5929.62 −0.338873
\(675\) 16409.2 0.935688
\(676\) 7459.51 0.424415
\(677\) −19800.9 −1.12409 −0.562045 0.827107i \(-0.689985\pi\)
−0.562045 + 0.827107i \(0.689985\pi\)
\(678\) 2472.42 0.140048
\(679\) −3117.36 −0.176191
\(680\) 4296.88 0.242320
\(681\) −5514.35 −0.310294
\(682\) −5467.03 −0.306955
\(683\) 11953.7 0.669686 0.334843 0.942274i \(-0.391317\pi\)
0.334843 + 0.942274i \(0.391317\pi\)
\(684\) −1536.39 −0.0858848
\(685\) 2159.99 0.120480
\(686\) −7310.59 −0.406880
\(687\) 1348.26 0.0748753
\(688\) 4047.02 0.224260
\(689\) 8249.75 0.456154
\(690\) −541.580 −0.0298806
\(691\) 15664.0 0.862355 0.431177 0.902267i \(-0.358098\pi\)
0.431177 + 0.902267i \(0.358098\pi\)
\(692\) −13981.7 −0.768071
\(693\) −1250.60 −0.0685520
\(694\) −21651.2 −1.18425
\(695\) 2148.85 0.117281
\(696\) 6226.70 0.339113
\(697\) 44989.2 2.44489
\(698\) 8326.69 0.451533
\(699\) −3746.82 −0.202744
\(700\) 3226.03 0.174189
\(701\) 27240.6 1.46771 0.733855 0.679306i \(-0.237719\pi\)
0.733855 + 0.679306i \(0.237719\pi\)
\(702\) −5717.18 −0.307380
\(703\) −3775.33 −0.202545
\(704\) 4552.53 0.243722
\(705\) 835.657 0.0446421
\(706\) 1136.94 0.0606081
\(707\) −1999.61 −0.106369
\(708\) 4924.06 0.261381
\(709\) −30706.2 −1.62651 −0.813256 0.581906i \(-0.802307\pi\)
−0.813256 + 0.581906i \(0.802307\pi\)
\(710\) −1099.99 −0.0581433
\(711\) −19412.5 −1.02395
\(712\) 2120.68 0.111623
\(713\) −16046.2 −0.842825
\(714\) 4001.02 0.209712
\(715\) −395.043 −0.0206626
\(716\) −9098.30 −0.474887
\(717\) −15109.9 −0.787013
\(718\) 14983.6 0.778806
\(719\) −10948.3 −0.567874 −0.283937 0.958843i \(-0.591641\pi\)
−0.283937 + 0.958843i \(0.591641\pi\)
\(720\) −250.121 −0.0129465
\(721\) −4270.54 −0.220587
\(722\) 682.580 0.0351842
\(723\) −4457.84 −0.229307
\(724\) 546.591 0.0280579
\(725\) 11009.5 0.563974
\(726\) −6693.07 −0.342153
\(727\) −32291.1 −1.64733 −0.823666 0.567076i \(-0.808075\pi\)
−0.823666 + 0.567076i \(0.808075\pi\)
\(728\) −3156.13 −0.160679
\(729\) 8868.32 0.450558
\(730\) 1542.38 0.0782000
\(731\) −54081.3 −2.73635
\(732\) −10676.4 −0.539087
\(733\) −12538.5 −0.631813 −0.315907 0.948790i \(-0.602309\pi\)
−0.315907 + 0.948790i \(0.602309\pi\)
\(734\) −4221.43 −0.212283
\(735\) 1378.87 0.0691980
\(736\) 10922.3 0.547013
\(737\) 2535.89 0.126744
\(738\) −12894.4 −0.643156
\(739\) 7341.82 0.365458 0.182729 0.983163i \(-0.441507\pi\)
0.182729 + 0.983163i \(0.441507\pi\)
\(740\) 1333.87 0.0662624
\(741\) −1268.92 −0.0629082
\(742\) 4099.48 0.202826
\(743\) 10142.9 0.500819 0.250410 0.968140i \(-0.419435\pi\)
0.250410 + 0.968140i \(0.419435\pi\)
\(744\) 17421.8 0.858488
\(745\) −5071.61 −0.249409
\(746\) −18898.4 −0.927504
\(747\) 11274.2 0.552210
\(748\) −6143.90 −0.300325
\(749\) 7853.67 0.383133
\(750\) 2098.82 0.102184
\(751\) 17843.5 0.867000 0.433500 0.901153i \(-0.357278\pi\)
0.433500 + 0.901153i \(0.357278\pi\)
\(752\) 1682.33 0.0815801
\(753\) −13870.0 −0.671248
\(754\) −3835.85 −0.185270
\(755\) −3387.97 −0.163312
\(756\) 3516.23 0.169159
\(757\) −8510.80 −0.408627 −0.204313 0.978906i \(-0.565496\pi\)
−0.204313 + 0.978906i \(0.565496\pi\)
\(758\) 25500.0 1.22190
\(759\) 2174.43 0.103988
\(760\) −677.181 −0.0323210
\(761\) 11227.3 0.534809 0.267404 0.963584i \(-0.413834\pi\)
0.267404 + 0.963584i \(0.413834\pi\)
\(762\) −8280.20 −0.393648
\(763\) 2804.84 0.133082
\(764\) 14955.2 0.708196
\(765\) 3342.43 0.157968
\(766\) 9797.35 0.462131
\(767\) −8517.62 −0.400982
\(768\) −12802.0 −0.601502
\(769\) 7372.60 0.345725 0.172863 0.984946i \(-0.444698\pi\)
0.172863 + 0.984946i \(0.444698\pi\)
\(770\) −196.306 −0.00918748
\(771\) −18856.5 −0.880806
\(772\) 1708.15 0.0796342
\(773\) 2922.48 0.135982 0.0679910 0.997686i \(-0.478341\pi\)
0.0679910 + 0.997686i \(0.478341\pi\)
\(774\) 15500.3 0.719827
\(775\) 30803.6 1.42774
\(776\) 12325.3 0.570169
\(777\) 3487.58 0.161025
\(778\) −702.863 −0.0323893
\(779\) −7090.24 −0.326103
\(780\) 448.326 0.0205803
\(781\) 4416.42 0.202345
\(782\) 14569.9 0.666265
\(783\) 11999.8 0.547686
\(784\) 2775.92 0.126454
\(785\) −2651.94 −0.120575
\(786\) 4388.36 0.199144
\(787\) −7067.94 −0.320133 −0.160067 0.987106i \(-0.551171\pi\)
−0.160067 + 0.987106i \(0.551171\pi\)
\(788\) 14347.3 0.648605
\(789\) −11241.9 −0.507255
\(790\) −3047.15 −0.137231
\(791\) 2630.34 0.118235
\(792\) 4944.57 0.221840
\(793\) 18468.0 0.827010
\(794\) −8643.94 −0.386350
\(795\) −1635.16 −0.0729472
\(796\) 3329.74 0.148266
\(797\) −41550.9 −1.84669 −0.923343 0.383975i \(-0.874555\pi\)
−0.923343 + 0.383975i \(0.874555\pi\)
\(798\) −630.555 −0.0279717
\(799\) −22481.4 −0.995412
\(800\) −20967.4 −0.926636
\(801\) 1649.62 0.0727672
\(802\) 25727.8 1.13277
\(803\) −6192.61 −0.272145
\(804\) −2877.93 −0.126240
\(805\) −576.172 −0.0252266
\(806\) −10732.4 −0.469023
\(807\) 18877.4 0.823441
\(808\) 7905.94 0.344220
\(809\) −15664.4 −0.680753 −0.340377 0.940289i \(-0.610555\pi\)
−0.340377 + 0.940289i \(0.610555\pi\)
\(810\) −282.189 −0.0122409
\(811\) 16913.6 0.732329 0.366164 0.930550i \(-0.380671\pi\)
0.366164 + 0.930550i \(0.380671\pi\)
\(812\) 2359.15 0.101958
\(813\) −7462.47 −0.321919
\(814\) 4327.04 0.186318
\(815\) −5222.50 −0.224462
\(816\) −3212.80 −0.137832
\(817\) 8523.14 0.364978
\(818\) −6017.18 −0.257195
\(819\) −2455.08 −0.104746
\(820\) 2505.07 0.106684
\(821\) 17022.9 0.723632 0.361816 0.932249i \(-0.382157\pi\)
0.361816 + 0.932249i \(0.382157\pi\)
\(822\) −7952.02 −0.337419
\(823\) 22976.8 0.973173 0.486586 0.873632i \(-0.338242\pi\)
0.486586 + 0.873632i \(0.338242\pi\)
\(824\) 16884.6 0.713839
\(825\) −4174.22 −0.176155
\(826\) −4232.59 −0.178294
\(827\) 597.155 0.0251090 0.0125545 0.999921i \(-0.496004\pi\)
0.0125545 + 0.999921i \(0.496004\pi\)
\(828\) 5168.41 0.216926
\(829\) −24800.2 −1.03902 −0.519510 0.854464i \(-0.673885\pi\)
−0.519510 + 0.854464i \(0.673885\pi\)
\(830\) 1769.69 0.0740083
\(831\) 9324.32 0.389238
\(832\) 8937.12 0.372403
\(833\) −37095.3 −1.54295
\(834\) −7911.00 −0.328460
\(835\) 5220.29 0.216354
\(836\) 968.269 0.0400578
\(837\) 33574.5 1.38651
\(838\) 14090.6 0.580850
\(839\) −8479.08 −0.348904 −0.174452 0.984666i \(-0.555815\pi\)
−0.174452 + 0.984666i \(0.555815\pi\)
\(840\) 625.567 0.0256954
\(841\) −16337.9 −0.669889
\(842\) −17173.4 −0.702890
\(843\) 24058.8 0.982952
\(844\) 17683.4 0.721196
\(845\) 2557.55 0.104121
\(846\) 6443.41 0.261855
\(847\) −7120.58 −0.288862
\(848\) −3291.87 −0.133306
\(849\) −9980.80 −0.403463
\(850\) −27969.6 −1.12865
\(851\) 12700.2 0.511584
\(852\) −5012.10 −0.201540
\(853\) −26344.7 −1.05748 −0.528738 0.848785i \(-0.677334\pi\)
−0.528738 + 0.848785i \(0.677334\pi\)
\(854\) 9177.17 0.367724
\(855\) −526.762 −0.0210700
\(856\) −31051.4 −1.23985
\(857\) −22575.2 −0.899829 −0.449915 0.893072i \(-0.648546\pi\)
−0.449915 + 0.893072i \(0.648546\pi\)
\(858\) 1454.35 0.0578681
\(859\) −6824.44 −0.271067 −0.135534 0.990773i \(-0.543275\pi\)
−0.135534 + 0.990773i \(0.543275\pi\)
\(860\) −3011.33 −0.119402
\(861\) 6549.83 0.259254
\(862\) −18927.2 −0.747867
\(863\) 11178.9 0.440944 0.220472 0.975393i \(-0.429240\pi\)
0.220472 + 0.975393i \(0.429240\pi\)
\(864\) −22853.5 −0.899875
\(865\) −4793.74 −0.188430
\(866\) −15385.8 −0.603730
\(867\) 28421.1 1.11330
\(868\) 6600.72 0.258114
\(869\) 12234.2 0.477582
\(870\) 760.291 0.0296279
\(871\) 4978.23 0.193663
\(872\) −11089.6 −0.430667
\(873\) 9587.50 0.371693
\(874\) −2296.20 −0.0888674
\(875\) 2232.88 0.0862689
\(876\) 7027.87 0.271061
\(877\) 29614.6 1.14027 0.570133 0.821552i \(-0.306892\pi\)
0.570133 + 0.821552i \(0.306892\pi\)
\(878\) −10555.6 −0.405735
\(879\) 9426.74 0.361725
\(880\) 157.633 0.00603840
\(881\) −44074.5 −1.68548 −0.842739 0.538322i \(-0.819059\pi\)
−0.842739 + 0.538322i \(0.819059\pi\)
\(882\) 10631.9 0.405890
\(883\) −11301.5 −0.430720 −0.215360 0.976535i \(-0.569093\pi\)
−0.215360 + 0.976535i \(0.569093\pi\)
\(884\) −12061.2 −0.458892
\(885\) 1688.25 0.0641242
\(886\) 11011.1 0.417524
\(887\) −11839.8 −0.448187 −0.224093 0.974568i \(-0.571942\pi\)
−0.224093 + 0.974568i \(0.571942\pi\)
\(888\) −13789.0 −0.521091
\(889\) −8809.08 −0.332336
\(890\) 258.938 0.00975240
\(891\) 1132.98 0.0425998
\(892\) −24185.5 −0.907837
\(893\) 3543.03 0.132769
\(894\) 18671.2 0.698499
\(895\) −3119.42 −0.116504
\(896\) −3682.10 −0.137288
\(897\) 4268.65 0.158892
\(898\) 7562.13 0.281015
\(899\) 22526.3 0.835699
\(900\) −9921.70 −0.367470
\(901\) 43990.0 1.62655
\(902\) 8126.37 0.299976
\(903\) −7873.51 −0.290160
\(904\) −10399.7 −0.382620
\(905\) 187.403 0.00688340
\(906\) 12472.8 0.457375
\(907\) −30147.6 −1.10368 −0.551838 0.833952i \(-0.686073\pi\)
−0.551838 + 0.833952i \(0.686073\pi\)
\(908\) 8260.40 0.301906
\(909\) 6149.82 0.224397
\(910\) −385.369 −0.0140383
\(911\) 42005.9 1.52768 0.763841 0.645405i \(-0.223311\pi\)
0.763841 + 0.645405i \(0.223311\pi\)
\(912\) 506.333 0.0183842
\(913\) −7105.27 −0.257558
\(914\) 20420.7 0.739012
\(915\) −3660.49 −0.132254
\(916\) −2019.67 −0.0728513
\(917\) 4668.66 0.168127
\(918\) −30485.7 −1.09605
\(919\) 41588.7 1.49280 0.746401 0.665497i \(-0.231780\pi\)
0.746401 + 0.665497i \(0.231780\pi\)
\(920\) 2278.04 0.0816355
\(921\) 12742.0 0.455877
\(922\) 22462.0 0.802328
\(923\) 8669.91 0.309181
\(924\) −894.469 −0.0318462
\(925\) −24380.4 −0.866619
\(926\) 19386.2 0.687979
\(927\) 13134.1 0.465352
\(928\) −15333.2 −0.542388
\(929\) −32440.9 −1.14570 −0.572848 0.819662i \(-0.694161\pi\)
−0.572848 + 0.819662i \(0.694161\pi\)
\(930\) 2127.23 0.0750051
\(931\) 5846.17 0.205801
\(932\) 5612.67 0.197263
\(933\) −877.202 −0.0307806
\(934\) −7923.66 −0.277591
\(935\) −2106.48 −0.0736785
\(936\) 9706.74 0.338969
\(937\) 3765.99 0.131302 0.0656508 0.997843i \(-0.479088\pi\)
0.0656508 + 0.997843i \(0.479088\pi\)
\(938\) 2473.79 0.0861111
\(939\) −220.461 −0.00766185
\(940\) −1251.80 −0.0434353
\(941\) 6311.38 0.218645 0.109323 0.994006i \(-0.465132\pi\)
0.109323 + 0.994006i \(0.465132\pi\)
\(942\) 9763.14 0.337686
\(943\) 23851.6 0.823662
\(944\) 3398.75 0.117182
\(945\) 1205.56 0.0414995
\(946\) −9768.67 −0.335737
\(947\) 29630.9 1.01676 0.508381 0.861132i \(-0.330244\pi\)
0.508381 + 0.861132i \(0.330244\pi\)
\(948\) −13884.4 −0.475680
\(949\) −12156.8 −0.415833
\(950\) 4407.97 0.150541
\(951\) −1874.64 −0.0639216
\(952\) −16829.4 −0.572946
\(953\) −23155.3 −0.787065 −0.393532 0.919311i \(-0.628747\pi\)
−0.393532 + 0.919311i \(0.628747\pi\)
\(954\) −12608.0 −0.427882
\(955\) 5127.52 0.173741
\(956\) 22634.3 0.765738
\(957\) −3052.55 −0.103109
\(958\) −22269.0 −0.751021
\(959\) −8459.95 −0.284865
\(960\) −1771.40 −0.0595538
\(961\) 33235.7 1.11563
\(962\) 8494.47 0.284691
\(963\) −24154.1 −0.808260
\(964\) 6677.76 0.223108
\(965\) 585.652 0.0195366
\(966\) 2121.19 0.0706501
\(967\) 16357.8 0.543984 0.271992 0.962300i \(-0.412318\pi\)
0.271992 + 0.962300i \(0.412318\pi\)
\(968\) 28153.0 0.934783
\(969\) −6766.25 −0.224317
\(970\) 1504.93 0.0498150
\(971\) −32741.7 −1.08211 −0.541055 0.840987i \(-0.681975\pi\)
−0.541055 + 0.840987i \(0.681975\pi\)
\(972\) −17263.4 −0.569674
\(973\) −8416.31 −0.277302
\(974\) 32688.6 1.07537
\(975\) −8194.45 −0.269161
\(976\) −7369.23 −0.241684
\(977\) −8985.92 −0.294253 −0.147126 0.989118i \(-0.547002\pi\)
−0.147126 + 0.989118i \(0.547002\pi\)
\(978\) 19226.7 0.628632
\(979\) −1039.63 −0.0339395
\(980\) −2065.53 −0.0673274
\(981\) −8626.31 −0.280751
\(982\) −8370.01 −0.271994
\(983\) −10051.2 −0.326128 −0.163064 0.986615i \(-0.552138\pi\)
−0.163064 + 0.986615i \(0.552138\pi\)
\(984\) −25896.3 −0.838969
\(985\) 4919.08 0.159122
\(986\) −20453.8 −0.660632
\(987\) −3272.99 −0.105553
\(988\) 1900.82 0.0612076
\(989\) −28671.8 −0.921852
\(990\) 603.741 0.0193820
\(991\) −33527.0 −1.07469 −0.537346 0.843362i \(-0.680573\pi\)
−0.537346 + 0.843362i \(0.680573\pi\)
\(992\) −42901.0 −1.37309
\(993\) −2983.41 −0.0953432
\(994\) 4308.27 0.137475
\(995\) 1141.63 0.0363739
\(996\) 8063.63 0.256532
\(997\) 38204.5 1.21359 0.606795 0.794858i \(-0.292455\pi\)
0.606795 + 0.794858i \(0.292455\pi\)
\(998\) 24347.8 0.772260
\(999\) −26573.5 −0.841591
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 19.4.a.b.1.2 3
3.2 odd 2 171.4.a.f.1.2 3
4.3 odd 2 304.4.a.i.1.2 3
5.2 odd 4 475.4.b.f.324.4 6
5.3 odd 4 475.4.b.f.324.3 6
5.4 even 2 475.4.a.f.1.2 3
7.6 odd 2 931.4.a.c.1.2 3
8.3 odd 2 1216.4.a.u.1.2 3
8.5 even 2 1216.4.a.s.1.2 3
11.10 odd 2 2299.4.a.h.1.2 3
19.18 odd 2 361.4.a.i.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.4.a.b.1.2 3 1.1 even 1 trivial
171.4.a.f.1.2 3 3.2 odd 2
304.4.a.i.1.2 3 4.3 odd 2
361.4.a.i.1.2 3 19.18 odd 2
475.4.a.f.1.2 3 5.4 even 2
475.4.b.f.324.3 6 5.3 odd 4
475.4.b.f.324.4 6 5.2 odd 4
931.4.a.c.1.2 3 7.6 odd 2
1216.4.a.s.1.2 3 8.5 even 2
1216.4.a.u.1.2 3 8.3 odd 2
2299.4.a.h.1.2 3 11.10 odd 2