Defining parameters
Level: | \( N \) | \(=\) | \( 19 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 19.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(5\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(19, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5 | 5 | 0 |
Cusp forms | 3 | 3 | 0 |
Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(19, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
19.3.b.a | $1$ | $0.518$ | \(\Q\) | \(\Q(\sqrt{-19}) \) | \(0\) | \(0\) | \(-9\) | \(-5\) | \(q+4q^{4}-9q^{5}-5q^{7}+9q^{9}+3q^{11}+\cdots\) |
19.3.b.b | $2$ | $0.518$ | \(\Q(\sqrt{-13}) \) | None | \(0\) | \(0\) | \(8\) | \(-10\) | \(q+\beta q^{2}-\beta q^{3}-9q^{4}+4q^{5}+13q^{6}+\cdots\) |