Properties

Label 19.2.e
Level $19$
Weight $2$
Character orbit 19.e
Rep. character $\chi_{19}(4,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $6$
Newform subspaces $1$
Sturm bound $3$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 19.e (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 1 \)
Sturm bound: \(3\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(19, [\chi])\).

Total New Old
Modular forms 18 18 0
Cusp forms 6 6 0
Eisenstein series 12 12 0

Trace form

\( 6 q - 6 q^{2} - 3 q^{3} - 6 q^{5} + 3 q^{6} + 6 q^{8} + 3 q^{9} + O(q^{10}) \) \( 6 q - 6 q^{2} - 3 q^{3} - 6 q^{5} + 3 q^{6} + 6 q^{8} + 3 q^{9} + 9 q^{10} + 3 q^{12} - 3 q^{13} - 3 q^{14} + 3 q^{15} - 18 q^{16} + 3 q^{17} - 6 q^{18} - 12 q^{19} - 6 q^{20} + 6 q^{23} + 15 q^{24} + 15 q^{26} + 6 q^{27} + 6 q^{28} - 3 q^{29} + 9 q^{31} + 9 q^{32} - 9 q^{33} + 6 q^{35} - 24 q^{36} - 15 q^{38} - 24 q^{39} + 21 q^{41} - 3 q^{42} - 3 q^{43} + 9 q^{44} - 15 q^{45} - 18 q^{46} - 3 q^{47} - 3 q^{48} + 15 q^{49} - 15 q^{50} + 3 q^{51} + 15 q^{52} - 3 q^{53} + 30 q^{54} + 18 q^{55} - 6 q^{56} + 24 q^{57} + 36 q^{58} + 12 q^{59} - 6 q^{60} - 12 q^{61} - 12 q^{62} + 12 q^{63} - 12 q^{64} - 12 q^{65} - 9 q^{66} - 30 q^{67} - 15 q^{68} - 12 q^{69} - 9 q^{70} - 6 q^{71} - 12 q^{72} - 12 q^{73} + 15 q^{74} + 30 q^{75} + 36 q^{76} - 18 q^{77} + 15 q^{78} - 39 q^{79} + 3 q^{80} + 6 q^{81} - 54 q^{82} + 3 q^{84} + 24 q^{86} - 21 q^{87} + 9 q^{88} - 12 q^{89} + 18 q^{90} + 15 q^{91} + 42 q^{92} + 9 q^{93} + 18 q^{94} + 39 q^{95} + 18 q^{96} + 18 q^{97} - 9 q^{98} + 9 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(19, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
19.2.e.a 19.e 19.e $6$ $0.152$ \(\Q(\zeta_{18})\) None \(-6\) \(-3\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{9}]$ \(q+(-1+\zeta_{18}-\zeta_{18}^{2})q^{2}+(-1+\zeta_{18}^{2}+\cdots)q^{3}+\cdots\)